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ABSTRACT 
 

Many practical CFD problems in industry and research attain crucial 

physical situations. In recent decades all CFD research efforts were directed 

towards the development of numerical techniques that are able to solve these 

situations accurately. To accurately predict flow properties the solution 

technique should be able to handle the interactions between high/low speeds, 

compressible/incompressible, subsonic/transonic/supersonic flows. 

 

The present thesis aims at developing a time accurate flow solver for 

Euler equations. This solver should be able to operate on different flow regimes 

seamlessly. The capabilities of the flowfield-dependent mixed explicit/implicit 

scheme, also known as flowfield dependent variation (FDV) method, have been 

investigated. Finite element techniques have been used to discretize the flow 

domain via standard Galerkin method. Several benchmarks have been tested. 

These test cases have been selected to clarify the ability of the FDV method to 

resemble complex flow situations and to cover a wide range of flow regimes. 

Good agreement with published literature has been obtained in all cases. 
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Chapter One  
Introduction  

 

1.1 Background 

Fluid dynamics applications span a wide range of human activities and 

interests on planet earth. It ranges from water supplies to space explorations. 

Think of any application in the daily life and certainly it will have something to 

do with fluid dynamics. The analysis and design of fluid dynamics application 

systems can be divided into three main approaches. A quick summery for each 

approach can be found in the next subsections. For complete discussions on this 

topic, the reader is referred to any fluid dynamics historical textbook or the 

introductory sections for fluid dynamics books such as  [1]- [10]. 

1.1.1 The Experimental Approach 

This approach states that: if a designer wants to know how a fluid will 

react towards an obstacle or how the fluid affects this obstacle, he/she has to 

build the complete system or an experimental scale model. This model 

facilitates the designer's ability to see exactly what the flow properties will be 

(velocity vector, pressure, temperature, etc.) by means of experimental setups 

and flow measurements hardware. 

 

The experimental approach is a good compromise for small applications 

design processes. Hence, it dominated the fluid dynamics field in the 

seventeenth century because of the simplicity of the engineering applications at 

these days. Also it looks more engineering than scientific, despite the fact that 

to have good results and accurate measurements the experiment should hold 

some scientific concepts such as; flow similarity conditions, experimental setup 

validity to actual size prototype, measurements accuracy, and small 

disturbances from the measurement hardware. 
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The advantages of this approach come from the certain and assumption-

less results, especially if accurate experimental setup could be built. Whereas, 

disadvantages are mainly due to the cost of building/rebuilding of such accurate 

setups during the design refinement process. The measurements hardware can 

be very expensive in some cases, and it may be impossible in other cases (it is 

common to have a combustion temperature about 3000 K in rockets, and there 

is no regular temperature sensor that can operate at this temperature). Also the 

interferences and disturbances from the measuring sensors can't be avoided in 

most of the applications. The disadvantages of this approach lead engineers and 

scientists to the theoretical approach. 

1.1.2 The Theoretical Approach 

It is the approach of pure mathematical solutions for the governing 

equations of fluid flows. In this approach the governing equations are to be 

solved analytically (exactly) to provide the flow properties everywhere in the 

solution domain. The complete governing equations for fluid dynamics are 

second order non-linear system of partial differential equations (PDEs). These 

equations are agreed to be called the Navier-Stokes equations in viscous flows 

and Euler equations in inviscid flows. The exact solution of these systems is 

not known yet in general, and it looks like such a general solution will not be 

found in the near future. 

 

In the late seventeenth and nearly all the eighteenth century, the 

scientists and designers had to assume strong assumptions, such as inviscid and 

incompressible flows. They even had to assume the flow to be potential in 

some cases to solve the governing PDEs analytically. These assumptions 

limited their ability from solving stiff fluid dynamics problems. It is worth 

mentioning to say that even after assuming potential flow, a pure analytical 

solution could not be found for all geometries and later a numerical technique 

was implemented to account for this problem, see  [11], named the singularity 

distribution method. 
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At one hand, the human applications are growing and the need for 

efficient and economical design is due. At the other hand, the theoretical 

approach suffers from its limited ability to account for actual engineering 

applications and the cost of the experimental approach can't be afforded for the 

preliminary design stages. This forced the fluid dynamics community to the 

computational approach. 

1.1.3 The Computational Approach 

In this approach the Navier-Stokes and Euler equations are discretized 

using any discretization technique (to be discussed in section  1.2). Then the 

flow properties are "computed" at some points in the flow domain. Some 

numerical considerations should be accounted for in order to guarantee the 

accuracy and validity of these discrete values in visualizing the actual 

flowfield. The origins of this approach are well established from long time ago. 

But, due to the limited computing abilities, actual implementation could not be 

carried out till the late fifties of the last century when the digital computers 

revolution started. 

 

This approach has the power of solving the complete system of 

governing equations for fluid dynamics. Virtually all flow phenomena can be 

simulated such as turbulence, chemical reactions, magnetic fields interactions, 

and even relativistic chemistry. This approach in general is referred to as 

Computational Fluid Dynamics (CFD). A brief summary of this issue is 

presented in the next section. The reader is referred to more specialist texts 

such as  [1]- [3] and  [5] to find more information. 

1.2 Computational Fluid Dynamics 

One of the best descriptions of the role of CFD in the fluid dynamics 

research can be found in  [5]. It is clear from the previous discussion on both the 

experimental and theoretical approaches that they constitute two distinctive 

dimensions in the development of fluid dynamics; at one hand, pure 
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experimental work and at the other hand, pure mathematical solutions. CFD 

offers a third dimension by its unique ability to render the actual flow 

phenomena using numerical methods and computations without the need for 

experimental setups (for preliminary design stages at least) and without the 

limitations of theoretical analysis. Many scientists refer to CFD as the science 

of numerical experimentation. 

 

It has been stated earlier that the origins of CFD, or to be precise, the 

origins of numerical solutions of the PDEs were sited long time ago. However, 

actual implementation for such techniques in solving engineering problems has 

been delayed because of the computational limitations without computers. 

After the revolution of digital computers, especially that of the last three 

decades, CFD became an affordable design tool in virtually all human 

applications related to fluid dynamics. 

 

By the years, many numerical methods have been developed and 

verified for accurately simulating the physical flow situations. The most 

famous and important methods will be summarized in the following 

subsections and the reader is referred to more specialized textbooks and review 

articles on this topic.  [1] is especially recommended for further readings. The 

introduction of the finite element method is delayed to section  1.3 for more 

detailed analysis. 

1.2.1 Finite Difference Methods 

In the Finite Difference Methods (FDMs), the governing PDEs are 

replaced by finite difference equations. Analytical derivatives of the flow 

properties are approximated to their numerical counterparts. This transforms 

the differential equations into a numerical scheme that can be solved using any 

numerical method.  [6] and  [7] are recommended for further readings on the 

origins of the FDMs. The most famous numerical methods that FDMs are 

based on in the explicit formulation are Jacobi Iteration Method (JIM), Point 
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Gauss-Seidel Iteration Method (PGSIM), and Point Successive over Relaxation 

(PSOR). While for implicit formulations, the Tri-Diagonal Solver (TDS) 

usually employed with the Line Gauss-Seidel Iteration Method (LGSIM), Line 

Successive over Relaxation (LSOR), and Alternating Direct Implicit (ADI) 

method. 

 

Many numerical schemes have been developed for the solution of the 

Navier-Stokes and Euler equations using FDMs. Some of these methods are 

based on central differences such as; Lax-Wendroff and explicit McCormack. 

Other methods are based on the concept of up-winding. The first order upwind 

schemes include Flux-Vector Splitting and Godunov method. The second order 

upwind schemes include Low resolution (MUSCL), high resolution (TVD). 

Also there are some schemes based on the concept of Essentially Non-

Oscillatory (ENO) upwind scheme. All the FDMs are called point based 

schemes, because they constitute only the approximation of the solution at 

individual points in the solution domain called "Nodes". 

 

Earlier applications of FDM in CFD include Courant, Friedrichs, and 

Lew (1928), Evans and Harlow (1957), Godunov (1959), Lax and Wendroff 

(1960), McCormack (1969), Briley and McDonald (1973), van Leer (1974), 

Beam and Warming (1978), Harten (1978, 1983), Roe (1981, 1984), Jameson 

(1982), among many others. The literature on FDM in CFD is adequately 

documented in many text books such as Roache (1972, 1999), Patankar (1980), 

Peyret and Taylor (1983), Anderson, Tannehill, and Pletcher (1984, 1997), 

Hoffman (1989), Hirsch (1988, 1990), Fletcher (1988), Anderson (1995), and 

Ferziger and Peric (1999), among others. 

 

The main disadvantage in FDMs is its inability to handle complex 

domain boundaries that are likely to rise in actual engineering problems. Even 

when numerical transformations for some complex boundaries can be found, 

huge transformation matrices are required to be stored in order to calculate the 
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derivatives of the flow properties in the computational domain. Structured grids 

are essential in FDMs, while most of the engineering problems naturally call 

for unstructured grids. Due to the FDMs shortages, the development of a 

domain based solutions rather than point based solutions is a logical step. And 

this is what called for finite volume and finite element methods. 

1.2.2 Finite Volume Methods 

Finite volume methods (FVMs), also called control volume methods, 

can be regarded as a logical extension to the FDM literature. All FDM 

practitioners can easily extend their knowledge and already-working schemes 

to FVM, with major modifications of course. Because of the simple data 

structure of FVMs, they become increasingly popular in recent years. Their 

formulations can be regarded as a domain based counterpart of FDM 

formulation. 

 

FVMs are formulated from the inner product of the governing PDEs 

with a unit weighting function. This process results in the spatial integration of 

the governing equations. Unlike the point based methods, the FVM requires the 

satisfaction of the governing equations in the integral form rather than the 

differential form. This gives the method the advantage of working on 

unstructured grids and, hence, the ability to simulate complex computational 

domains. The integrated terms are approximated by either finite differences or 

finite elements, discretely summed over the entire domain. 

 

Traditional curvilinear coordinate transformation required for FDM is 

no longer needed. Designation of the components of a vector normal to 

boundary surfaces in FVM accommodates the unstructured grid configuration 

with each boundary surface integral constructed between nodal points. Many 

domain-approximation-techniques have been adapted and implemented in the 

FVM codes. From these techniques; the node-centered control volume, cell-

centered control volume, and cell-centered average scheme concepts.  [1] is 



7 

especially recommended for more details about the relation between FVM and 

other discretization methods. 

1.2.3 Other Discretization Techniques 

There are many other numerical discretization methods that have been 

developed to be used in the solution of PDEs which raise from engineering 

applications like fluid dynamics. From these methods we mention: 

 

 Spectral Element Methods. 

 Boundary Element Methods. 

 Conservation-Element/Solution-Element Method. 

 Mont-Carlo Method. 

 Finite Point Method. 

 

Despite the fact that these methods share the same heart in their origin, 

which is the numerical solution of PDEs, they are different in terms of the 

amount of analytical work and computations on digital computers. Also the 

simplicity of the mathematical concepts varies by a significant ratio from one 

method to another. Some of these methods provide the solution at the 

boundaries and/or the solution in the domain itself; hence a specific application 

may naturally call for its suitable numerical method. The designer/engineer, 

who has a certain engineering problem at hand, should have the ability to 

choose from these methods the one that best suite his/her interests. 

1.3 Finite Element Methods 

In finite element methods (FEMs), the solution domain is discretized 

with smaller domains that are called finite elements. A certain distribution for 

the flow properties over each element is assumed via shape functions. All the 

derivatives can be computed with the aid of these shape functions. The 

governing equations in the differential forms are multiplied by a trial function 

(usually the same shape function and/or a perturbation from it) and integrated 
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over the element. This technique is called the weighted residual approach. After 

that an assembling technique is employed to get the global contribution matrix. 

FEMs have the advantage of giving the Neumann boundary conditions 

explicitly using the contour integrals that results from the integration by parts 

in the element equations. Through all the numerical methods that have been 

developed since ever, FEM is considered to be unique in this advantage. 

 

FEMs were originally introduced by civil engineers. The reader is 

referred to any finite element textbook's introduction for a summary of the 

method's history such as  [1] and  [12]. Every writer has his/her own theory 

about the origins of the FEM. The essence of the method was certainly 

available for a long time, but the actual implementation delayed to till the mid 

of last century. 

 

Earlier applications of FEM in CFD include Zienkiewiez and Cheung 

(1965), Oden (1972, 1988), Chung (1978), Hughes et al. (1982), Baker (1983), 

Zienkiewiez and Taylor (1991), Carey and Oden (1986), Pironneau (1989), 

Pepper and Heinrich (1992). Other contributions of FEM in CFD for the past 

two decades include generalized Petrov-Galerkin methods (Heinrich et al., 

1977; Hughes, Franca, and Mallett, 1986: Johnson, 1987), Taylor-Galerkin 

methods (Donea, 1984; Lohner, Morgan, and Zienkiewiez, 1985), adaptive 

methods (Oder et al., 1989), characteristic Galerkin methods (Zienkiewiez et 

al., 1995), discontinuous Galerkin methods (Oden, Babuska, and Baumann, 

1998), and incompressible flows (Gresho and Sani, 1999), among others. 

 

To illustrate how the researchers in the CFD field think of both FDM 

and FEM, a quoted paragraph from  [1] is reported. T. J. Chung wrote; 

"Historically, FDMs have dominated the CFD community. Simplicity in 

formulations and computations contributed to this trend. FEMs, on the other 

hand, are known to be more complicated in formulations and more time-

consuming in computations. However, this is no longer the case in many of the 
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recent developments in FEM applications. Many examples of superior 

performance of FEM have been demonstrated." 

 

In this thesis, FEM is employed in the development of the required 

numerical solutions for many reasons. From these reasons we mention: 

 The method has sound mathematical foundations. In some situations, the 

solution corresponds to a variational principle for which an upper/lower 

bound can be determined. 

 The FEM approximates complicated geometrical boundaries easily. 

Almost invariably the FDM starts by regularizing the domain, i.e. 

mapping complex regions into regular (rectangular) regions, and there is 

no need to say that this is not possible in all engineering applications. 

 The FEM accounts for boundary conditions in an easy and straight 

forward manner. Especially the Neumann boundary conditions. This 

will be demonstrated for no penetration and pressure boundary 

conditions in  Chapter Two and  Chapter Three. 

 It is also a more implicit procedure than FDM, since more grid points 

are connected together. This facilitates the solution with high Courant-

Frederich-Levy (CFL) numbers as will be demonstrated in  Chapter 

Four. 

 The FEM is modular; with a "library" of elements built in a code, one 

can shift to successively more sophisticated elements to gain more 

accuracy without changing program structure. On the same grid one can 

also use different levels of interpolation for the different dependent and 

independent variables, while a staggered grid may be needed in a FDM 

approach. 

 

In the following subsections each approach of the main finite element 

sub-methods will be introduced in brief. 
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1.3.1 Direct Approach 

This approach is applicable only to simple problems governed by an 

algebraic relationship or a simple first order ordinary differential equation 

(ODE) for 1-D problems. It can be used to simulate simple engineering 

situations where the governing equations are linear. The most important use for 

this approach is that; it illustrates all the mechanics of the FEM in terms of 

discretization, obtaining the local influence matrix, assembling it in a global 

matrix, and solving it for easy problems. This can be considered as a good 

starting point for any novice in FEM. 

1.3.2 Variational Approach 

This approach is best suited for physical problems that are governed by 

an extremization law, i.e. a minimum or a maximum. Such equations rise in 

solid mechanics more than fluid mechanics. In fluid mechanics and especially 

fluid dynamics, non-linearity is essential and, hence, not many variational 

principles exist. The most important application of the variational approach in 

fluid dynamics is in the solution of the inviscid incompressible and subsonic/ 

transonic flows in 1-D applications via the method of artificial compressibility. 

1.3.3 Weighted Residual Approach 

This approach is considered to be the most general finite element 

approach. It can be used for any type of PDEs and especially those of CFD. It 

suits the problems where a variational principle does not exist, for nonlinear 

problems, and for unsteady problems. The residual of the PDE(s) is minimized 

by being weighted with a certain weighting function, integrated over each 

element domain, and equated to zero. The weighting functions depend on the 

particular residual approach that will be used. In this class of methods one can 

mention the following methods: 

 

 Standard Galerkin method. 

 Taylor-Galerkin Method. 
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 Streamline Upwind Petrov-Galerkin Method (SUPG). 

 The sub-domain method (also known as FVM). 

 The collocation method. 

 The least-squares method. 

 

It is also important to mention that; whenever a variational principle 

exists, the variational FEM and the standard Galerkin FEM yield identical 

equations. 

1.4 Literature Review 

In this section a quick review of the available literature about the 

numerical methods in the solution of Navier-Stokes and Euler equations is 

presented. In this review, interest has been given to the most successful and 

globally respected researchers' work. Many other methods exist but they are 

either un-mature or have no active research nowadays. 

1.4.1 Taylor-Galerkin Method 

In 1984 Lohner et al.  [13] used a method based on writing the non-

symmetric first-order differential operators along characteristics to achieve a 

self-adjoint form, and then applied the Galerkin method for the solution of a 

system of hyperbolic equations. Approximately at the same time, Donea  [14] 

developed the Taylor-Galerkin algorithm in which the weak statement 

(resulting from the integration by parts) was formed on a Taylor series 

expansion of the unsteady equation, with higher-order derivatives re-expressed 

in terms of derivatives of the flux vector of the hyperbolic conservation laws. 

 

In 1987, Baker and Kim  [15] generalized these concepts and proposed a 

Galerkin weak-statement formulation which encompasses over a dozen 

independently derived finite difference and finite element dissipative 

algorithms. In 1986, Oden et al.  [16] used a semi-explicit two-step algorithm 

for the analysis of unsteady inviscid compressible flow in arbitrary two-
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dimensional domains. Later on, In 1987 Oden et al.  [17] used the Taylor-

Galerkin method for the solution of the Euler equations in the supersonic 

regime, along with the flux-corrected-transport approach to avoid non-physical 

oscillations in the solution. 

 

However, in many cases, Gibbs-type oscillations of the solutions can 

still be observed owing to the presence of discontinuities, which are the main 

difficulty in the numerical solution of first-order hyperbolic conservation laws. 

An artificial viscosity or a limiter function is needed to control such oscillatory 

behavior. 

1.4.2 Streamline Upwind Petrov-Galerkin Method (SUPG) 

In 1983, Harten  [18] developed the concept of TVD (total variation 

diminishing) and constructed second-order shock-capturing schemes using 

finite difference methods which have proved to be very successful in solving 

the compressible Euler equations for high-speed flows ( [19] and  [23]). Many 

desirable properties of TVD schemes, such as stability and robustness in 

solving the hyperbolic conservation laws with strong shocks, have been 

demonstrated. One characteristic of TVD schemes is that they are at most first-

order accurate at non-sonic critical points. This restricts the accuracy of TVD 

schemes to be at most first-order in the L∞ -norm and at most second-order in 

the 1L -norm for general problems. 

 

To overcome this difficulty, in 1987 Harten and Osher  [24] and Harten 

et al.  [25] constructed ENO (essentially non-oscillatory) schemes which use a 

local adaptive stencil to obtain information automatically from regions of 

smoothness when the solution develops discontinuities. As a result, 

approximations using these methods can achieve uniformly high-order 

accuracy right up to discontinuities, while keeping a sharp, essentially non-

oscillatory shock transition. However, a convergence theory for ENO schemes 

is still not available at the present time. 
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Numerical experiments on ENO schemes for the scalar conservation law 

in two dimensions and the Euler equation in one dimension have been reported 

in the work of Harten et al.  [25]. Also, results for two-dimensional gas-dynamic 

problems involving multiple-shock (Euler equations) interactions have been 

given in J. Yang and C. Lombard  [26]. 

 

C. W. Shu in  [27] offered a class of TVB (total variation bounded) 

uniformly high-order schemes has been proposed for the hyperbolic 

conservation laws, which, they claim, share most of the advantages and may 

remove local degeneracy at the critical points of TVD schemes. The TVD, 

TVB and ENO concepts and the resulting so-called high-resolution schemes 

are mostly developed in the finite difference or finite volume setting. 

 

Using the idea of upwind schemes in the finite difference method, in 

1982 Brooks and Hughes  [28] introduced the Streamline Upwind Petrov-

Galerkin (SUPG) method, in which the weight function is modified by adding a 

perturbation to the standard Galerkin test function. The added perturbation 

creates an upwind effect by weighting more heavily the upstream nodes within 

the elements than the downstream nodes. In 1984, Tezduyar and Hughes  [29] 

generalized the SUPG method to first-order multidimensional hyperbolic 

systems. Later on, the shock capturing ability of the method was improved by 

adding non-linear operators to the perturbation to account for the compressible 

Navier-Stokes and Euler equations ( [30]- [34]). 

 

Among all the other CFD methods, the SUPG is considered to be the 

most solid method. This is due to the fact that Shakib et al. in  [34] presented a 

mathematical poof for the stability and convergence of the method. This can be 

considered as a unique accomplishment to those authors. 
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1.4.3 Least-Squares Residual Method 

Another method is the least-squares weighted residual method. In this 

method the weighting function is replaced by the derivative of the residual 

itself. The method has good stability properties due to its minimization nature, 

and has been applied for the solution of a variety of problems. 

 

As one of the earliest efforts in this field one can mention the technique 

presented by Polk and Lynn  [35] in 1978 for the solution of unsteady gas 

dynamic equations, with elements that are constructed in both space and time. 

Another space-time finite element scheme was presented by Nguyen and 

Reynen  [36] in 1984 and was applied to the solution of convection-dominated 

problems in one and two-dimensions. 

 

In 1979 Fletcher  [37] used the least-squares method to solve the Euler 

equations for sub-critical compressible flows. The special feature of his method 

was to represent groups of variables rather than single variables. In 1989, 

Bruneau et al.  [38] used a similar method to study the vortical phenomena 

created by the subsonic and supersonic flow over a flat plate at different angles 

of attack. Actual application for the least-squares finite element method has 

been introduced to fluid dynamics by Jiang and Povinelli  [39] in 1990 and 

Lefobvre and Paraire  [40] in 1993 when they introduced linear and quadratic 

approximations for the solution of the Euler equations. 

 

Application of the least-squares method to a governing equation of the 

general form: ( )L fφ =  leads to the favorable result of a symmetric and 

positive-definite coefficient matrix, if L  is a first-order differential operator. 

When L  is a higher-order operator, however, this property is completely lost 

during the integration-by-parts and moreover elements with higher-order 

continuity. 

 



15 

Despite the facts that the implementation of least squares is easy and 

straight forward, this method in general suffers from the excessive, inherited, 

and uncontrollable dissipation which can in some cases cause inaccuracy of the 

results. Many researchers who developed this technique had to attach any 

adaptation technique to get satisfactory performance from the least squares 

formulations. 

1.4.4 Discontinuous Galerkin Method 

The discontinuous Galerkin method was introduced in 1973 by Reed 

and Hill  [41] and successively analyzed in 1974-1975 by Lesaint and Raviart 

 [42]- [43] for the linear advection equation. More recently, in 1989-1991 

Cockburn and Shu  [44]- [46], and Chen et al.  [47] devised a high order accurate 

(both in space and time) total variation bounded (TVB) "Runge-Kutta 

discontinuous Galerkin" (RKDG) method for the solution of nonlinear systems 

of conservation laws. The TVB property of the RKDG method is enforced by 

means of a "slope limiting" procedure designed to control the deviation from 

the element mean of the numerical solution. 

 

Finally the method was mature enough to the solution of the 

compressible Navier-Stokes and Euler equations in 1993-1995 by F. Bassi and 

S. Rebay  [48]- [50]. They extended a high-order discontinuous finite element 

method for the numerical solution of the Euler equations, which has proven to 

be very effective. Later on, in 1996 they extended the method in  [51] to the 

case of the compressible Navier-Stokes. 

1.4.5 Flowfield Dependent Variation Method (FDV) 

The flowfield dependent variation (FDV) method is considered to be a 

general approach which leads to most of the currently available computational 

schemes as special cases. The original idea of FDV began in 1999 from the 

need to address the physics involved in shockwave turbulent boundary layer 

interactions, Chung  [52] and Schunk et al.  [53]. 
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In turbulent shockwave boundary layers the transitions, interactions, and 

interferences between various flow phenomena dominate the flowfield. In such 

flows, strong coupling exists between sub-flowfields that are inviscid/ viscous, 

compressible/incompressible, or laminar/turbulent in nature. The solution 

constitutes not only the physical complexities but also computational 

difficulties. This is where the very low velocity in the vicinity of the wall 

( 0,Re 0M = = ) and very high velocity far away from the wall 

( 63,Re 10M = = ) coexist within a domain of study. Transitions from one type 

of flow to another and interactions between two distinctly different flows have 

been studied for many years, both experimentally and numerically. 

 

Incompressible flows were analyzed using the pressure-based 

formulation with the primitive variables for the implicit solution of the Navier-

Stokes equations. The precondition process for the time-dependent term 

intended for all speed flows was also discussed. Whereas compressible flows 

were analyzed using the density-based formulation with the conservation 

variables for the solution of the Navier-Stokes equations. However, in dealing 

with the domain which contains all speed flows with various physical 

properties where the equations of state for compressible and incompressible 

flows are different, and where the transitions between laminar and turbulent 

flows are involved in dilatational dissipation due to compressibility, the 

numerical method must provide very special and powerful treatments when 

applied to the governing PDEs. The FDV method has been devised toward 

resolving these issues. 

 

Originally T. J. Chung et al.  [54]- [55] in 1996 introduced 3-D mixed 

explicit-implicit generalized Galerkin method using spectral elements. This 

method had the ability to analyze the high speed turbulent compressible flows. 

Later on, the same author [55] in 1998 evolved the method to its current form. 

Many successful implementations have been demonstrated. 
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1.5 Aim of the Thesis 

Practical CFD problems in industry and research attain crucial physical 

situations. In the recent decades, all CFD research efforts were directed towards 

the development of numerical techniques that are able to solve these situations 

accurately. To accurately predict flow properties, the solution technique should 

be able to handle the inherited strong interactions between high/low speeds, 

compressible/incompressible, subsonic/transonic/supersonic flows. 

 

This thesis aims at developing a time-accurate flow solver for Euler 

equations. Certain characteristics have been drawn about this solver which have 

to be attained in the developed technique, these characteristics are: 

 

 This solver should be able to operate on different flow regimes 

seamlessly. It should give satisfactory performance in the solution of 

supersonic flows while maintaining its robustness and accuracy in the 

solution of subsonic/transonic flows as well. 

 The solution should be time accurate. 

 The solver should support all types of boundary conditions which may 

rise from most of the engineering applications in CFD. 

 It should be able to handle structured as well as unstructured grids. 

 The solution should not suffer from neither very high nor very low 

numerical dissipation. I.e. the amount of the used numerical diffusion 

should provide numerical stability and peak-less solutions without 

altering the accuracy. 

 The computer program should be modularized as much as possible in 

order to be easily maintained and upgraded. 

 No external codes and/or built in functions should be used for major 

computational steps. This is to gain the power of changing every detail 

in the program without restrictions. 

 Preconditioned sparse GMRES matrix solver is to be used. 
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As a response to the requirements stated above, a solid numerical 

method has to be used. To this aim, the capabilities of the flowfield-dependent 

mixed explicit/implicit scheme, also known as flowfield dependent variation 

(FDV) method, have been investigated. 

 

As stated earlier, the FDV theory was devised in response to the need to 

characterize the complex physics of shockwave turbulent boundary layers in 

which transitions between, and strong interactions of inviscid/viscous, 

incompressible/compressible, and laminar/turbulent flows constitute the most 

complex physical phenomena in fluid dynamics (Chung et al.  [52]- [55]). The 

complexities of physics, in general, lead directly to computational difficulties. 

 

It is clear from the original purpose of the FDV method that this method 

was introduced to solve very complicated and sophisticated flowfields. This 

method meets the demands in the Euler solver stated above. So, in this thesis a 

step by step analysis is introduced toward the development of the finite element 

flowfield dependent Euler equations solver. 

1.6 Thesis Layout 

This thesis is divided into four chapters and three appendices. These 

four chapters have been designed to give the best presentation for the research 

efforts that have been paid in this thesis development process. Numerical test 

cases and/or illustrating figures have been used whenever possible to clarify the 

used techniques for the reader. 

 

The three appendices are introduced to gain the convenience of 

separating mathematical details of the Jacobians, iterative matrix solver, and 

error analysis from the heart of the theory. In the beginning of each chapter, a 

more comprehensive explanation of the layout and construction of this 

individual chapter are presented in the first paragraph. 
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In  Chapter One (this chapter), an introduction and the necessary 

background have been introduced to gain the reader's attention for the value of 

the present research work. In section  1.1, a brief background about fluid 

dynamics' analysis approaches has been introduced to clarify the role of CFD in 

engineering applications. Section  1.2 represents an introduction to 

computational methods in CFD and a quick summary for most of them. Section 

 1.3 is more specialized since it introduces finite element method and its sub-

methods. Section  1.4 provides a comprehensive review for the available 

literature in the numerical solution of Navier-Stokes and Euler equations using 

the finite element method. Section  1.5 states the aim of the thesis and the 

characteristic and guide lines used in the development of the computer code. 

Finally, section  1.6 (this section) presents the thesis layout and the contents of 

each chapter and its sections. 

 

 Chapter Two represents the heart of the flowfield dependent variation 

(FDV) method and verifies this technique though the application of FDV 

method to a sample 1-D equation. The first three sections ( 2.1,  2.2, and  2.3) are 

the milestones in FDV method derivation. Section  2.4 introduces the 1-D finite 

element implementation, and section  2.5 represents the numerical results. 

 

In  Chapter Three, the FDV method is applied to the compressible Euler 

equations. The discussion is limited to two-dimensional flows. Section  3.1 

briefly summarizes the system of PDEs representing inviscid compressible 

flow (Euler equations) and section  3.2 introduces the FDV treatment of these 

equations. Section  3.3 discusses the implicitness parameters and the various 

methods to calculate them, while section  3.4 represents the finite element 

implementation technique. Section  3.5 introduces the most common 

compressible inviscid boundary conditions. 

 

 Chapter Four contains the numerical results which validate the 

developed FDV Euler equations solver and their discussions, and also 
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introduces the thesis conclusions. In section  4.1 the discontinuity capturing 

factor (DCF) will be tuned to ensure ripple-free solution, while in section  4.2 

the ability of the FDV formulation to predict the transient flows accurately will 

be verified by solving a Riemann problem. Sections  4.3 and  4.4 are devoted to 

supersonic and subsonic/transonic test cases, respectively. Finally, section  4.5 

introduces the thesis conclusions and future research recommendations. 
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Chapter Two  

Flowfield-Dependent Variation (FDV) Method 

 

In this chapter, the basics of the FDV method will be presented. This 

will be done by selecting a model PDE in one-dimensional space and applying 

the FDV method to clarify its merits. This chapter contains five sections; the 

first three sections ( 2.1,  2.2, and  2.3) represent the milestones in FDV method 

formulation, the fourth section ( 2.4) introduces the FEM implementation for 

the resulting equations, and the fifth section ( 2.5) represents the solution of two 

applications using FDV with FEM in 1-D, namely the solution of the linear 

first order wave equation and the inviscid 1-D Burgers equation. Consider the 

one-dimensional scalar PDE given by: 

 0F
t x
ψ∂ ∂

+ =
∂ ∂

 (2.1) 

where; ψ  is a space-time dependent scalar function (i.e. ( ),x tψ ψ= ), 

( )F F ψ=  is a scalar function. 

 

Equation (2.1) has been chosen because the system of compressible 

Euler flow equations can be written in the same form using the conservation 

variables (discussed in detail in  Chapter Three). Using the chain rule, equation 

(2.1) can be rewritten as follows: 

 0F
t x
ψ ψ

ψ
∂ ∂ ∂

+ =
∂ ∂ ∂

 (2.2) 

renaming the Jacobian of transformation to be: 

 Fa
ψ
∂

=
∂

 (2.3) 

substituting from (2.3) into (2.2), we get: 

 0a
t x
ψ ψ∂ ∂

+ =
∂ ∂

 (2.4) 
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where; the Jacobian a  is considered to be constant at each time step and will be 

updated after each time step. 

2.1 Special Taylor Expansion 

The first step in FDV method is to expand the unknown variable ψ  in a 

special form of Taylor expansion. This will be done by expanding 1nψ +  around 
nψ  in both the explicit and implicit Taylor formulations up to and including the 

second order derivative as follows: 

 ( ) ( )
2 2

1 3
22

n n
n n t

t O t
t t
ψ ψψ ψ+ Δ∂ ∂

= + Δ + + Δ
∂ ∂

 (2.5) 

 ( ) ( )
21 2 1

1 3
22

n n
n n t

t O t
t t

ψ ψψ ψ
+ +

+ Δ∂ ∂
= + Δ + + Δ

∂ ∂
 (2.6) 

multiplying equation (2.5) by ( )1 s−  and equation (2.6) by s  and adding we 

get: 

 
( )

( ) ( ) ( )

1
1

2 2 2 1
3

2 2

1

1
2

n n
n n

n n

t s s
t t

t
s s O t

t t

ψ ψψ ψ

ψ ψ

+
+

+

⎛ ⎞∂ ∂
= + Δ − + +⎜ ⎟∂ ∂⎝ ⎠

Δ ⎛ ⎞∂ ∂
+ − + + Δ⎜ ⎟∂ ∂⎝ ⎠

 

  (2.7) 

It is clear that equating s  to 0.0 the explicit form of Taylor expansion is 

obtained, while equating to 1.0 the implicit form is recovered. Allowing the 

first and the second order derivatives to have different implicitness, equation 

(2.7) will have the following form: 

 ( ) ( )
1 2

2 2
1 3

22

n s n s
n n t

t O t
t t

ψ ψψ ψ
+ +

+ Δ∂ ∂
= + Δ + + Δ

∂ ∂
 (2.8) 

where; 

 
1 1

1

n s n n

s
t t t

ψ ψ ψ+ +∂ ∂ ∂Δ
= +

∂ ∂ ∂
 (2.9) 

 
22 2 2 1

22 2 2

n s n n

s
t t t

ψ ψ ψ+ +∂ ∂ ∂ Δ
= +

∂ ∂ ∂
 (2.10) 
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 1 1n n nψ ψ ψ+ +Δ = −  (2.11) 

1s  and 2s  are called the implicitness parameters and they vary from 0.0 

to 1.0. It is clear that at 1 2 0.0s s= =  (1.0) equation (2.5) returns to the explicit 

(implicit) form of the Taylor expansion. For mixed values between 0.0 and 1.0, 

equation (2.5) reads a mixed explicit/implicit form of the Taylor expansion. 

These parameters, 1s  and 2s , will be computed from the flowfield properties in 

the preceding time step. From these definitions, the FDV parameters can be 

summarized as follows: 

 1s F≡  function's first order FDV parameter. 

 2s F≡  function's second order FDV parameter. 

2.2 Presentation of the FDV Implicitness Parameters 

The second step in FDV formulation is to introduce the so called FDV 

implicitness parameters. The parameters 1s  and 2s  are the reason of the FDV 

method's name. These parameters may gain their physical meaning by 

calculating them from the flow variables' fluctuations (changes) in the 

derivative. 

 

The first order FDV parameter 1s  is flowfield dependent, whereas the 

second order FDV parameters 2s  is assumed to be exponentially proportional 

to the first order parameter and mainly acts as artificial viscosity. The primary 

goal from 1s  is to provide the best possible solution accuracy at the regions of 

high rate of variations and discontinuities. While the goal from 2s  is to provide 

the solution with the required numerical diffusion without altering its accuracy. 

Following the same concept in  [56], the proposed method to calculate 1s  from 

the current flowfield is given by: 

 ( )1 min ,1s r=  (2.12) 

 ( )2 1
1 1
2

s sη= +  (2.13) 
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where; *
minr L

x
ψ ψ∂

=
∂

, 0.05 0.2η< < . 

 

The value minψ  is defined by the minimum algebraic absolute between 

the neighboring nodes (i.e. between the element nodes). The main idea behind 

the special form of the Taylor expansion is that the regions of high numerical 

instability or high rate of variations in the solution domain will have high 

implicitness parameters, and vise versa. The computed values for 1s  and 2s  

should attain two conditions. Theses conditions are: 

 

 Good resolution for the discontinuities and high rate of variations in ψ . 

 The minimum possible numerical diffusion that maintains stability and 

virtually has no effect on the solution accuracy. 

 

Substituting from equations (2.9), (2.10), and (2.11) into equation (2.5) we get: 

 
( ) ( )

1

1
1

2 2 2 1
3

22 22

n n
n

n n

t s
t t

t
s O t

t t

ψ ψψ

ψ ψ

+
+

+

⎛ ⎞∂ ∂Δ
Δ = Δ + +⎜ ⎟∂ ∂⎝ ⎠

Δ ⎛ ⎞∂ ∂ Δ
+ + + Δ⎜ ⎟∂ ∂⎝ ⎠

 

  (2.14) 

Equation (2.1) can be rewritten as follows: 

 F
t x
ψ∂ ∂

= −
∂ ∂

 (2.15) 

also equation (2.4) can be rewritten as follows: 

 a
t x
ψ ψ∂ ∂

= −
∂ ∂

 (2.16) 

Differentiating equation (2.16) w.r.t. time we get: 

 
2

2 a
t t x
ψ ψ∂ ∂ ∂⎛ ⎞= − ⎜ ⎟∂ ∂ ∂⎝ ⎠

 (2.17) 

and interchanging the order of the time and spatial derivatives we have: 
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2

2 a
t x t
ψ ψ∂ ∂ ∂⎛ ⎞= − ⎜ ⎟∂ ∂ ∂⎝ ⎠

 (2.18) 

substituting from (2.15) into (2.18), we obtain: 

 
2 2

2 2

Fa
t x
ψ∂ ∂

=
∂ ∂

 (2.19) 

substituting from (2.15) and (2.19) into (2.14) the result will take the following 

form: 

 
( ) ( )

1
1

1

2 2 2 1
3

22 22

n n
n

n n

F Ft s
x x

t F Fa s a O t
x x

ψ
+

+

+

⎛ ⎞∂ ∂Δ
Δ = Δ − − +⎜ ⎟∂ ∂⎝ ⎠

Δ ⎛ ⎞∂ ∂ Δ
+ + + Δ⎜ ⎟∂ ∂⎝ ⎠

 

  (2.20) 

Equation (2.20) is the Taylor expansion of the time term in (2.1). Again, 

at 1 2 0.0s s= =  (1.0) the explicit (implicit) expansion is obtained, and for 

values between 0.0, 1.0 a mixed explicit/implicit expansion results. 

2.3 Residual Form of the FDV Method 

The third and final step in the FDV method is to write the governing 

equation in a residual form in order to make it ready for any discretization 

technique such as FEM or FDM. Rewriting (2.20) in a residual form and 

expressing the terms associated with the FDV parameters in terms of their 

Jacobians we get: 

 
( ) ( ) ( )

( ) ( )

2 2
1 1 1

1 2 2

2 2
3

2

2

0
2

n n n

n n

t
t s a as a

x x
tF Ft a O t

x x

ψ ψ ψ+ + +Δ∂ ∂
Δ + Δ Δ − Δ +

∂ ∂

Δ∂ ∂
+Δ − + Δ =

∂ ∂

 

  (2.21) 

rearranging equation (2.21) we get: 

 ( ) ( ) ( )
2

1 1 1 3
2 0n n n n n nD E Q O t

x x
ψ ψ ψ+ + +∂ ∂

Δ + Δ + Δ + + Δ =
∂ ∂

 (2.22) 

where; 
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 ( )

( )

1
2

2
2

2 2

2

2

2

n

n

n n
n

D ts a

t
E s a

tF FQ t a
x x

= Δ

Δ
= −

Δ∂ ∂
= Δ −

∂ ∂

 

  (2.23) 

The superscript n  is used to emphasize that these terms are calculated at 

the thn  time step. Equation (2.22) along with equation (2.23) represent the 

FDV method treatment for the original PDE given in (2.1). Equation (2.22) is 

ready to be solved for the time change of the unknown variable ( 1nψ +Δ ). It can 

be solved using any discretization technique such as FEM or FDM. Since 

(2.22) contains all the necessary numerical dissipation and stabilizing elements 

that are required for numerical stability and solution accuracy, no additional 

modifications are necessary from the discretization technique that will be used. 

 

It is worth mentioning to say that, with the aid of the implicitness 

parameters ( 1s  and 2s ) any available FEM or FDM scheme may rise as a 

special case from FDV method when holding these parameters to certain 

values. 

2.4 Finite Element Implementation via Standard Galerkin Method 

Since all the numerical stability issues have been accounted for in the 

formulation of the FDV method, the application of the standard Galerkin 

method is the next and final step towards finite element implementation for 

equation (2.22). It worth motioning to say that the standard Galerkin method is 

the central difference schemes counterpart in the FEM. Standard Galerkin 

method is carried out by the inner product of the residual with the shape 

function as the weighting function: 

 ( )
2

1

, 0
x

x x

R F dxα ψ
=

Φ =∫  (2.24) 



27 

where; ( ),R Fψ  is the residual of (2.22) and αΦ  is the shape function for node 

α . In what follows the order of the solution error ( )3O tΔ  will be omitted from 

(2.22) for convenience. Substituting from (2.22) into (2.24), we get: 

 ( ) ( )
2

1

2
1 1 1

2 0
x

n n n n n n

x x

D E Q dx
x xα ψ ψ ψ+ + +

=

⎛ ⎞∂ ∂
Φ Δ + Δ + Δ + =⎜ ⎟∂ ∂⎝ ⎠

∫  (2.25) 

The first step in calculating the integration given in equation (2.25); a 

certain shape function is to be assumed for the variation of the unknown 
1nψ +Δ . The second step is to integrate by parts all the differential terms. The 

next two subsections summarize these steps for the 1-D element using linear 

one-dimensional shape function. 

2.4.1 1-D Linear Shape Function 

Consider the 1-D element shown in Figure  2.1. The solution can be 

either in terms of the global coordinate " x " or the natural coordinate "ξ ". The 

later is used because it provides a simpler treatment in the finite element 

formulations. Both coordinate systems are shown in Figure  2.1. 

 

  

Figure  2.1   1-D element in global and 

natural coordinates 

Figure  2.2   Linear 1-D scalar function 

variation 

Assuming linearly varying scalar function ψΔ  as shown in Figure  2.2, 

the linear distribution of the scalar function in terms of the natural coordinate 

ξ  can be written as follows: 

 1 2ψ β β ξΔ = +  (2.26) 

1ξ = − 1ξ =

1ψΔ  

2ψΔ  
ψΔ

Node 1 

1

1
x x
ξ
=
= −

 

Node 2 

2

1
x x
ξ
=
=
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or in matrix form: 

 [ ] 1

2

1
β

ψ ξ
β
⎧ ⎫

Δ = ⎨ ⎬
⎩ ⎭

 (2.27) 

Where 1β  and 2β  are unknown constants. Using the values at the 

element nodes summarized in Table 1 to determine these constants: 

 

Table 1 Linear 1-D element nodal coordinates in the natural coordinate 

Node ξ  ψΔ  

1 -1.0 1ψΔ  

2 1.0 2ψΔ  

 

 1 1 2

2 1 2

ψ β β
ψ β β

Δ = −
Δ = +

  

or in a matrix form: 

 1 1

2 2

1 1
1 1

ψ β
ψ β

Δ −⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥Δ ⎣ ⎦⎩ ⎭ ⎩ ⎭

  

Using matrix inversion to obtain the unknown constants 1β  and 2β , we get: 

 1 1

2 2

1 11
1 12

β ψ
β ψ

Δ⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥ Δ−⎣ ⎦⎩ ⎭ ⎩ ⎭

 (2.28) 

substituting from (2.28) into (2.27), we obtain: 

 
[ ]

[ ]

1

2

1

2

1 11 1
1 12

1 1 1
2

ψ
ψ ξ

ψ

ψ
ψ ξ ξ

ψ

Δ⎧ ⎫⎡ ⎤
Δ = ⎨ ⎬⎢ ⎥ Δ−⎣ ⎦ ⎩ ⎭

Δ⎧ ⎫
Δ = − + ⎨ ⎬Δ⎩ ⎭

  

letting: 

 ( ) ( )1 2
1 11 , 1
2 2

ξ ξΦ = − Φ = +  (2.29) 

where; 1Φ  and 2Φ  are the first and second nodes' shape functions, shown in 

Figure  2.3. The reader is referred to any finite element textbook like  [1] or [12]. 
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The shape functions' derivatives w.r.t the natural co-ordinate is given by: 

 1, 2,
1 1,

2 2ξ ξ
−

Φ = Φ =  (2.30) 

Using the shape function, any scalar function and its derivative can be 

written as: 

 [ ] 1
1 2

2

ψ
ψ

ψ
Δ⎧ ⎫

Δ = Φ Φ ⎨ ⎬Δ⎩ ⎭
 (2.31) 

 1
1, 2,

2
ξ ξ ξ

ψ
ψ

ψ
Δ⎧ ⎫

⎡ ⎤Δ = Φ Φ ⎨ ⎬⎣ ⎦ Δ⎩ ⎭
 (2.32) 

 

Figure  2.3   1-D linear shape functions in natural coordinates 

 

From the definition of the shape function we have: 

 1 1 2 2x x x= Φ +Φ  (2.33) 

This leads to the following relations: 

 ( )1 2
* *

2 2,
x x x

L x L
ξξ

− + ∂
= =

∂
 (2.34) 

 
*

2
Ldx dξ=  (2.35) 

where; *
2 1L x x= −  is the element characteristic length. 

2.4.2 Integration by Parts 

The integration will be evaluated in terms of ξ , so rewriting the 

derivatives in equation (2.25) in terms of "ξ " rather than " x " using the linear 

1-D shape function presented in the previous section: 

1ξ = −  1ξ =  

1

2

1
0

Φ =
Φ =

 1Φ  2Φ  
1

2

0
1

Φ =
Φ =
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( ) ( )

( )

1 1 1

1.0 *

2
1.0

0
2

2

n n n n n

n n

D E
x x x L d

tF Ft a
x x x

α
ξ

ξ ξ ξψ ψ ψ
ξ ξ ξ

ξ
ξ ξ ξ

ξ ξ ξ

+ + +

=−

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
Δ + Δ + Δ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎜ ⎟Φ =⎜ ⎟Δ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟+Δ − ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

∫

  (2.36) 

substituting from (2.34) and (2.35) into (2.36) we get: 

 
( ) ( )

( )

* 2
1 1 1

* 21.0

2
21.0

* 2

2
2

0

n
n n n n

n n

L ED
L

d
F a Ft t

L

α

ψ ψ ψ
ξ ξ

ξ

ξ ξ

+ + +

−

⎛ ⎞∂ ∂
Δ + Δ + Δ +⎜ ⎟∂ ∂⎜ ⎟Φ =
⎜ ⎟∂ ∂
+Δ − Δ⎜ ⎟

∂ ∂⎝ ⎠

∫  

  (2.37) 

expressing 1nψ +Δ  as a linear combination of the shape functions αΦ  we have: 

 ( ) ( ) ( )1 1,n nt tα αψ ξ ξ ψ+ +Δ = Φ Δ  (2.38) 

substituting from (2.38) into (2.37) and performing integration by parts we get: 

 

( )

( ) ( )

1.01.0 1.0*
1 1 1

,
1.01.0 1.0

1.01 1.0
1

, ,* *
1.01.0

1.0 1.0

,
1.01.0

1.0

2 2
,* *

1.0

2

2 2

n n n n n

nn n
n

n
n

n
n

L d D D d

E E d
L L

t F t F d

a F a Ft t d
L L

αα β β α ξ β β

α α ξ β ξ β

α α ξ
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  (2.39) 

2.4.3 Finite Element Equations 

In order to obtain the finite element equations, the terms in equation 

(2.39) are rearranged after substituting from (2.23) in the following form: 

 ( ) 1n n n n nA B H Nαβ αβ β α αψ ++ Δ = +  (2.40) 

where; 
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  (2.41) 

It is clear that in the inter-elements the values of nBαβ  and nN α  cancel 

each other. They will only be available at the first element's first node and the 

last element's second node. At the first element's first node we have: 

 

( )

( )

2 2
2

11 1 *

2

1 *

2

2

n

n n
n

t s aB ts a
L

t aN t F F
L

∗ ∗

Δ
= −Δ −

Δ
= Δ +

 (2.42) 

and at the last element's second node we have: 

 

( )

( )

2 2
2

Imax,Imax 1 *

2

Imax *

2

2

n

n n
n

t s aB ts a
L

t aN t F F
L

∗ ∗

Δ
= Δ −

Δ
= −Δ +

 (2.43) 

It is evident from (2.42) and (2.43) that if there is any Neumann 

boundary condition in the solution, it can be easily implemented by simply 

setting it either at the first or the last node. 

2.5 FDV Method Applied to 1-D Equations 

To verify the applicability of the FDV method, two simple applications 

are presented in this section. These applications are the linear first order wave 

equation in 1-D and the inviscid 1-D Burgers equation. The analytical solutions 

of those problems provide good chance to test the capabilities of the FDV 

method and also to verify the role of implicitness parameters. 
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2.5.1 Linear First Order Wave Equation 

The general form of the linear first order wave equation is given by: 

 ( ) 0a
t x
ψ ψ∂ ∂

+ =
∂ ∂

 (2.44) 

where; a  is a constant greater than zero. 

 

For this simple equation, the characteristic lines are straight lines given 

by the equation x at const− = . Here, the value of ψ  is convected along these 

lines with constant velocity a . The general solution of (2.44) is given by: 

 ( )x atψ ψ= −  (2.45) 

For instant, when the initial condition is given by: 

 ( ) ( )
0 0.0 0.2

,0 sin 0.2 0.3
0 0.3 1.0

x
x kx x

x
ψ

≤ ≤⎧
⎪= < ≤⎨
⎪ < ≤⎩

 (2.46) 

where; 20k π= . 

Figure  2.4 plots the initial condition given in (2.46). Using the general 

solution given in (2.45) and the initial condition in (2.46), the solution of (2.44) 

will take the form. 

 ( ) ( )( )
min

min max

max

0

,0 sin

0

x x

x k x at x x x

x x

ψ

≤⎧
⎪

= − < ≤⎨
⎪ <⎩

 (2.47) 

where; min 0.2x at= +  and max 0.3x at= + . 

 

Letting 20a =  and discretizing the domain from 0.0 to 1.0 with 500 

nodes and using 510t −Δ = , the following results have been obtained. Figure  2.5 

plots the numerical and exact solutions at different time steps. It is clear that the 

FDV method has succeeded in resolving the solution without major changes in 

the profile of the convected solution. A closer comparison with FDV and most 

of the other CFD methods like those of the FDM will reveal the superiority of 

the FDV-FEM formulation. 
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Figure  2.4   ( ),0xψ , linear wave equation initial condition 

 
Figure  2.5   ( ),x tψ , linear wave equation solution 
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2.5.2 Inviscid Burgers Equation 

The general form of the inviscid Burgers equation is given by: 

 
2

0
2t x

ψ ψ⎛ ⎞∂ ∂
+ =⎜ ⎟∂ ∂ ⎝ ⎠

 (2.48) 

Equation (2.48) has a non-linear flux term proportional to the square of 

the variable ψ , which is very similar to the convection term in Euler equations. 

In this case, the flux function and its Jacobian are: 

 
2

2
F ψ
=  (2.49) 

 a ψ=  (2.50) 

Assuming an initial shock discontinuity of the form: 

 ( )
0.0 0.2

,0
0.2 1.0

L

R

x
x

x
ψ

ψ
ψ

≤ ≤⎧
= ⎨ < ≤⎩

 (2.51) 

Figure  2.6 plots the initial condition given in (2.51). The analytical 

solution for this case is a moving shockwave in the positive x  direction with 

speed c  given by: 

 ( )
2

L Rc
ψ ψ+

=  (2.52) 

Letting 1.0Lψ = , 0.5Rψ =  and discretizing the domain from 0.0 to 1.0 

with 500 nodes and using 35 10t −Δ = × , the following results have been 

obtained using FDV method. Figure  2.7 plots the numerical and exact solutions 

at different time steps. Again, FDV method has succeeded in resolving the 

solution without major changes in the profile of the convected non-linear 

discontinuity. 
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Figure  2.6   ( ),0xψ , inviscid Burgers equation initial condition 

 
Figure  2.7   ( ),x tψ , inviscid Burgers equation solution 
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Chapter Three  

FDV-FEM Compressible Euler Flow Solver 

 

In this chapter the flowfield dependent variation method is applied to the 

two-dimensional compressible Euler flow equations. All theoretical issues are 

to be addressed in this chapter. This chapter is divided into five sections. A 

brief summary of Euler equations is given in section  3.1 with the non-

dimensionalization procedure, followed by FDV method implementation in 

section  3.2. Section  3.3 is completely devoted to the analysis of the implicitness 

parameters, while section  3.4 addresses the finite element implementation for 

the resulting equations. Finally, section  3.5 introduces a brief analysis about the 

boundary conditions based on the theory of characteristics. 

3.1 Euler Equations in 2-D Space 

The system of continuity equation, ix  momentum equations, and energy 

equation in the case of inviscid compressible flow are called the Euler flow 

equations. These equations and their derivation from basic principles can be 

found in any fluid dynamics textbook such as  [9]. The reader is especially 

referred to  [3] for a sound mathematical analysis about the properties of this 

system of equations. The following is a listing of the system of Euler equations 

in the conservative form using the conserved fluxes: 

 ( ) ( )1 2

1 2

0
u u

t x x
ρ ρρ ∂ ∂∂

+ + =
∂ ∂ ∂

 (3.1) 

 ( ) ( ) ( )2
11 1 2

1 2

0
u Pu u u

t x x
ρρ ρ∂ +∂ ∂

+ + =
∂ ∂ ∂

 (3.2) 

 ( ) ( ) ( )2
22 1 2

1 2

0
u Pu u u

t x x
ρρ ρ ∂ +∂ ∂

+ + =
∂ ∂ ∂

 (3.3) 

 ( ) ( ) ( )1 1 2 2

1 2

0t t te u e Pu u e Pu
t x x
ρ ρ ρ∂ ∂ + ∂ +

+ + =
∂ ∂ ∂

 (3.4) 
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where; the total energy, te , is given in terms of the internal energy, e , and 

velocity components, iu , by: 

 
2
i i

t
u ue e= +  (3.5) 

and for a thermally perfect gas the internal energy can be written in terms of the 

temperature as follows: 

 
( )

1
1ve c T RT

γ
= =

−
 (3.6) 

also from the equation of state for perfect gas we have: 

 P RTρ=  (3.7) 

substituting from equation (3.7) into equation (3.6), we get: 

 
( )

1
1

Pe
γ ρ

=
−

 (3.8) 

substituting from equation (3.8) into equation (3.5) and solving for the pressure 

we get: 

 ( )
2 2
1 21

2t
u uP eγ ρ

⎛ ⎞+
= − −⎜ ⎟

⎝ ⎠
 (3.9) 

It is clear that Euler equations are a system of first order nonlinear 

partial differential equations. This system is classified as hyperbolic, which 

means that characteristic lines and the propagation of waves is the most crucial 

issue in its solution. A special case from this system is the incompressible flow 

situation; this case rises naturally at low Mach numbers and the system changes 

to elliptic system. At sonic speed, the system changes to be parabolic. For a 

typical transonic case, where all subsonic, transonic, and supersonic flows 

exist, the system is of a mixed type. 

 

It is important to remember that; despite the fact that a thorough 

understanding of the mathematics involved in the solution of such systems is 

important, the physical meaning of the various terms in the equations is an 

essential requirement for practical implementation. A correct mathematical 
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solution may be obtained for such systems, but this solution may present a 

hypothetical case which has no interest in any application. So, engineers and 

academic researchers only have to be concerned with the solution of PDEs like 

Euler equations. 

 

The numerical solution of the Euler system of equations in dimensional 

form typically involves operations between terms that vary by several orders of 

magnitude. This leads to a situation in which the numerical solution fails or 

become unstable as the computer floating point limits are exceeded. So, the 

governing equations are usually written in a non-dimensional form. When 

dimensionless forms are used the computations are maintained between 0.0 and 

1.0. Also writing the system of Euler equations in non-dimensional form 

facilitates the generalization to embody large range of problems. Toward this 

end, the following non-dimensional variables are introduced: 

 

* * *

* * *

2

* *

2 2

, ,

, ,

1,

i
i

i
i

t
t

x tx t LL V
u P Tu P T
V V T
ee R

V M

ρρ
ρ

ρ

γ

∞
∞

∞ ∞ ∞ ∞

∞ ∞

= = =

= = =

= =

 

  (3.10) 

where; , , , ,L V T Mρ∞ ∞ ∞ ∞  are the characteristic length, free stream velocity, free 

stream density, free stream temperature, and free stream Mach number, 

respectively. 

 

Multiplying equation (3.1) by L V ρ∞ ∞ , equations (3.2) and (3.3) by 

2L V ρ∞ ∞ , and equation (3.4) by 3L V ρ∞ ∞  we get: 

 

* * * *
* 1 2

* * *

1 2

0
u u

t x x

ρ ρ
ρ

⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠+ + =
∂ ∂ ∂

 (3.11) 
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2* * ** * * * *
11 1 2

* * *

1 2

0
u Pu u u

t x x

ρρ ρ
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ +∂ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ + =
∂ ∂ ∂

 (3.12) 

 

2* * ** * * * *
22 1 2

* * *

1 2

0
u Pu u u

t x x

ρρ ρ
⎛ ⎞⎛ ⎞ ⎛ ⎞ ∂ +∂ ∂ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ + =
∂ ∂ ∂

 (3.13) 

 

* * * * * * * * * * * *

1 1 2 2

* * *

1 2

0
t t te u e P u u e P u

t x x

ρ ρ ρ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ + ∂ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ + + =
∂ ∂ ∂

 (3.14) 

Closer look to equations (3.1)-(3.4) and equations (3.11)-(3.14) will 

reveal the fact that both the dimensional and non-dimensional forms are 

identical when replacing each dimensional variable with its non-dimensional 

counterpart. 

 

So, from now on the superscript (
*
) will be omitted from the analysis 

taking into consideration that proper non-dimensionalization procedures should 

be followed to gain the convenience of dealing with non-dimensional variables. 

Introducing the conservation variables vector U , convective flux vector iF  and 

using the indicial notation, the compressible Euler flow equations can be 

written as follows: 

 0i

it x
∂ ∂

+ =
∂ ∂
U F  (3.15) 

where; in two-dimensional space ( )1 2X X−  the conservation variable vector is 

given by: 

 

1

12

23

4 t

U
uU
uU
eU

ρ
ρ
ρ
ρ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

U  (3.16) 

and the convection flux vector is given by: 
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1 2
2

1 1 1 2 1
2

2 2 1 2 2

1 1 2 2

i

i i
i

i i

i t i t t

u u u
u u P u P u u
u u P u u u P
u e Pu u e Pu u e Pu

ρ ρ ρ
ρ δ ρ ρ
ρ δ ρ ρ
ρ ρ ρ

⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥+ +⎪ ⎪ ⎢ ⎥= =⎨ ⎬ ⎢ ⎥+ +⎪ ⎪ ⎢ ⎥⎪ ⎪+ + +⎩ ⎭ ⎣ ⎦

F  (3.17) 

 

In order to make the system of Euler equations ready for the FDV 

implementation, the whole system has to be written in terms of the 

conservation variables. So, rewriting equation (3.15) in a quasi-linear form we 

get: 

 0i
it x

∂ ∂
+ =

∂ ∂
U Ua  (3.18) 

where; ia  is the convection Jacobian tensor. The reader is referred to  Appendix 

A for more details about the derivation of this tensor and the various forms to 

present it. 

3.2 FDV Formulation for the 2-D Euler Equations 

Following the same three steps presented in  Chapter Two to get the 

residual form of the compressible Euler equations given in equation (3.15) will 

result in the FDV formulation for the system of Euler equations. In  3.2.1 a 

special form of Taylor expansion is introduced for the vector of the 

conservation variables. While in  3.2.2 the time and spatial derivatives are 

interchanged. Finally, in  3.2.3 the system is written in the residual form. 

3.2.1 Special Taylor Expansion 

Expanding 1n+U  around nU  in a special form of Taylor expansion using 

both the explicit and implicit formulations up to and including the second order 

derivative as mentioned in  2.1 we obtain: 

 ( ) ( )( )1 2
2 2

31
22

n s n s
n n t

t O t
t t

+ +
+ Δ∂ ∂
= + Δ + + Δ

∂ ∂
U UU U  (3.19) 

where; 
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1 1

1 10 1
n s n n

s s
t t t

+ +∂ ∂ ∂Δ
= + ≤ ≤

∂ ∂ ∂
U U U  

 
22 2 2 1

2 22 2 2 0 1
n s n n

s s
t t t

+ +∂ ∂ ∂ Δ
= + ≤ ≤

∂ ∂ ∂
U U U  

 1 1n n n+ +Δ = −U U U  

The implicitness parameters, 1s  and 2s , are flowfield dependent. They 

may gain their physical meaning by being calculated from the flow variables' 

fluctuations. The various proposed methods to calculate these parameters and 

their meaning are delayed to section  3.3. 

3.2.2 Interchanging Time and Spatial Derivatives 

Substituting from equation (3.15) into the Taylor expansion by 

interchanging the time derivatives with the spatial derivatives we get: 

 ( )

( ) ( )( )

1
1

1

2

2 1
3

2

2

2

n n
n i i

i i

n
j

i
i j

n
j

i
i j

t s
x x

t
x x

t
s O t

x x

+
+

+

⎛ ⎞∂ ∂Δ
Δ = Δ − − +⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂Δ ∂
+ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ΔΔ ∂
+ + Δ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

F FU

F
a

F
a

 

  (3.20) 

It is evident that the same technique that has been adapted in  Chapter 

Two is also used here, so many minor details have been omitted to avoid the 

repetition of redundant mathematical steps. The major difference is that; here 

the formulation is applied to a system of equations rather than to a single scalar 

function. However, the use of the indicial notation is very useful to retain the 

same mathematical steps. 

3.2.3 Residual Form 

Rewriting equation (3.20) in the residual form and substituting all the Δ  

terms with their Jacobian equivalents we obtain: 
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( ) ( ) ( )

( ) ( )( )

2 2
1 1 1

1 2

2
3

2

0
2

n n n
i i j

i i j

nn
ji

i
i i j

t
t s s

x x x

t
t O t

x x x

+ + +Δ∂ ∂
Δ + Δ Δ − Δ +

∂ ∂ ∂

⎛ ⎞∂Δ∂ ∂
+Δ − + Δ =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

U a U a a U

FF a

 

  (3.21) 

rearranging equation (3.21) we get: 

 ( ) ( ) ( )
2

1 1 1 3 0n n n n n n
i ij

i i j

O t
x x x

+ + +∂ ∂
Δ + Δ + Δ + + Δ =

∂ ∂ ∂
U D U E U Q  (3.22) 

where; 

 ( )

( ) ( ) ( )

1
2

2

2 2

2

2

n
i i

n
ij i j

n n n
i i j

i i j

t s

t
s

t
t

x x x

= Δ

Δ
= −

Δ∂ ∂
= Δ −

∂ ∂ ∂

D a

E a a

Q F a F

 

  (3.23) 

The superscript n  is used to emphasize that these terms are calculated at 

the thn  time step. Equation (3.22) along with equation (3.23) represents the 

FDV method treatment for the system of Euler equations given in (3.15). 

Equation (3.22) is ready to be solved for the time change of the conservation 

variables 1n+ΔU . It can be solved using any discretization technique in both 

FEM and FDM. Since all necessary numerical dissipation and stabilizing 

elements that are required for numerical stability and solution accuracy is 

already impeded, no additional modifications are necessary from the 

discretization technique that will be used. 

 

As mentioned in  2.4, any available FEM or FDM scheme may rise as a 

special case from FDV method when fixing the FDV parameters to certain 

values. For instant, setting 1 20.0, 1.0s s= =  the so called Generalized Taylor-

Galerkin method is recovered, and setting ( )1 2 0.0 1.0s s= =  the explicit 



43 

(implicit) Euler scheme is obtained. Also most of the FDM schemes can be 

obtained as special cases from FDV method. Setting 1 2 0.0s s= =  and letting: 

 1 1
2 2j j+ −
= =a a a   

the Lax-Wendroff scheme without artificial viscosity is recovered as a special 

case. For a comprehensive comparison between FDV method and various 

methods in both the FEM and FDM, the reader is referred to  [55]. As summary, 

the FDV method is proved to reduce as a special case to some of the FDM 

schemes: 

 

 Lax-Wendroff scheme with and without viscosity. 

 Explicit and implicit McCormack schemes. 

 First-order upwind scheme. 

 PISO and SIMPLE. 

 

Also some special cases of the FDV method are famous FEM methods. 

For instant: 

 

 Generalized Taylor-Galerkin (GTG). 

 Generalized Petrov-Galerkin (GPG). 

 Characteristic-based Zienkiewicz-Codina. 

 

The reader is especially referred to  [54] for mathematical proofs that 

verifies analogies and relations between these various methods and the FDV 

formulation. 

3.3 FDV Implicitness Parameters 

The FDV implicitness parameters are the heart of the FDV method. 

Under or over estimation of these parameters may result in an unsatisfactory 

performance of the solver, or even numerical failure for the entire solution. 

These parameters allow the FDV method to adapt itself to each flow situation 
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and to supply each element with its unique and distinctive numerical scheme 

that guarantees both accurate solution and sufficient numerical dissipation for 

stability. 

 

The first order FDV parameter 1s  controls all the high-gradient 

phenomena such as shockwaves. This parameter is to be calculated from the 

changes in the flowfield properties that affect the convection phenomena. 

While, the second order FDV parameter 2s  controls the numerical dissipation 

that is required for numerical stability. This is evident from its association with 

the second order time derivative in Taylor expansion. 

 

When the value of 1s  reaches the zero limit, this means that convection 

effect is small or nearly negligible and the FDV method alters itself to take this 

effect by zeroing all the 1s  terms which represents convection. On the other 

hand, 2s  is believed to be exponentially proportional to the value of 1s . This is 

due to the fact that flowfield regions those suffer from high gradients (high 1s ) 

adequately require high numerical dissipation (high 2s ) and vise versa. The 

various methods available to calculate this parameter from the flowfield are 

presented in  3.3.1 and  3.3.2. 

3.3.1 Original FDV Theory 

The original FDV theory that has been proposed by T. J. Chung in  [1] 

for calculating 1s  and 2s  from the current flowfield is given by: 

 

 
( )

1 min

min

min ,1
0 , 0
1 0

r r
s r M

M

ε
ε

⎧ >
⎪

= < =⎨
⎪ =⎩

 (3.24) 

 ( )2 1
1 1 , 0.05 0.2
2

s sη η= + < <  (3.25) 
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where; 2 2
max min minr M M M= − , ε  is a small number, and min max,M M  are 

defined by the minimum and maximum values of the Mach number in the 

neighboring nodes (i.e. between the element nodes). 

 

Relation (3.25) is plotted in Figure  3.1 for wide span for η . It is evident 

from Figure  3.1 that as η  gets smaller, the value of 2s  reaches the unity faster, 

which means higher artificial viscosity. Usually the value of 0.10 is typical for 

most applications. 

 

 
Figure  3.1   The relation between 1s  and 2s  

 

It is clear from the definition of 1s  that it is associated with the changes 

of Mach number values in the flowfield. Mach number is a major factor in the 

analysis of convection flows and it distinguishes between various flow-

situations which can be encountered in the same domain of study. For instant 

when there is no change in the Mach number, equation (3.24) reads 1 0.0s = . 

Automatically the FDV formulation alters itself to take this into account and 
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switches off all the 1s  terms. When the minimum Mach reaches the 

incompressible limit, the formulation generate terms that is equivalent to the 

pressure correction schemes like Poisson equation. 

 

As 1s  gets higher the need for numerical dissipation increases and hence 

high 2s  values are logical. So from the definition given in (3.25), 2s  is 

exponentially proportional to 1s  and starting from the value of 0.5 to ensure 

numerical dissipation in all situations. 

3.3.2 Modified FDV Theory 

In  [56] a modification to equation (3.24) was proposed. This 

modification was named as the Modified FDV (MFDV) method. In MFDV 

method, the relation used to recover the first order implicitness parameter from 

the current flowfield data was modified to give this parameter a deeper physical 

meaning. This can be accomplished by setting 1s  to be proportional to the first 

order derivative of the Mach number This is quite equivalent to the definition 

of 1s  given in  [52]- [55]. Also to retain the dimensional similarity the result is 

multiplied by the elemental characteristic length and scaled by the minimal 

Mach number between the element nodes. The proposed modification is given 

by: 

 ( )1 min ,1s r=  (3.26) 

where; *
minr L M M= ∇  and the other implicitness parameter ( 2s ) is 

calculated as in Eqn. (3.25). 

 

As mentioned in  [56], the original formula proposed by T. J. Chung and 

his co-workers is admitted to applicable and effective and this modification has 

been considered as a step towards deeper understanding of the role of the 

implicitness parameters. From the definition given in (3.26), the regions with 

small variations in the Mach number the derivative will reach the zero value. 

This gives 1s  the signal to switch off all its terms in the regions with smooth or 
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no variations. As the derivatives gets steeper 1s  gets higher. In the limiting case 

when the minimum Mach number is zero, r  will be infinity and the limiting 

minimum function sets 1s  to its higher value which is unity. 

 

All the trends that can be obtained from (3.24) can be observed in (3.26). 

So, it is believed that FDV and MFDV methods will behave the same. But 

crucial benefit is evident from the MFDV. This benefit is that; 1s  in MFDV has 

a deeper physical meaning. This facilitates the ability to predict the response of 

the method to certain flow domain and helps in preparing the problem at hand 

for the solver. 

 

Also, with the aid of the MFDV meaning the FDV method is no longer 

limited to solve flow problems. The MFDV method can be easily extended to 

any application that requires the solution of PDEs like the Euler equations. In 

this case the 1s  parameter will be associated with the derivatives of the solution 

field variables. This has been already made in section  2.5, where the FDV 

method was used to solve both the wave equation and inviscid Burgers 

equations. 

3.4 Finite Element Implementation 

Applying the standard Galerkin method, this is equivalent to the central 

difference schemes in FDMs, by integrating the inner product of the residual 

with the shape function as the weighting function. By applying this we get: 

 ( ), 0i dα
Ω

Φ Ω =∫ R U F  (3.27) 

where; ( ), iR U F  is the residual of (3.22). In what follows the order of the 

solution error will be omitted for convenience. Substituting from (3.22) into 

(3.27), we obtain: 
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 ( ) ( )
2

1 1 1 0n n n n n n
i ij

i i j

d
x x xα

+ + +

Ω

⎛ ⎞∂ ∂
Φ Δ + Δ + Δ + Ω =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
∫ U D U E U Q  

  (3.28) 

To calculate the integration given in equation (3.28); a certain shape 

function is to be assumed for the variation of the unknown 1n+ΔU . The second 

step is to integrate by parts all the differential terms. The next two subsections 

summarize these steps for the 2-D bilinear quadrilateral element shape 

function. 

3.4.1 2-D Bilinear Quadrilateral Element Shape Function 

Consider the 2-D element shown in Figure  3.2. The integrations 

encountered in finite element analysis can be either in terms of the global 

coordinates ix  or the natural coordinates iξ . The later is used because it 

provides a simpler treatment using Gauss quadrature. 

 

  

Figure  3.2   Actual 2-D quadrilateral 

element in global coordinates 

Figure  3.3   Transformed 2-D element 

in natural coordinates 

 

Both coordinate systems are shown in Figure  3.2 and Figure  3.3, 

respectively. Any scalar function u  can be written as follows: 

 

 1 2 1 3 2 4 1 2u β β ξ β ξ β ξ ξ= + + +  (3.29) 

 

1ξ  

2ξ  

-1, -1 

1, 1 

1, -1 

-1, 1 

1x  

2x

( )1 2 1
,x x  ( )1 2 2

,x x  

( )1 2 3
,x x  ( )1 2 4

,x x  
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or in a matrix form as follows: 

 [ ][ ]1 2 1 2 1 2 3 41u ξ ξ ξ ξ β β β β Τ=  (3.30) 

where; 1β , 2β , 3β  and 4β  are unknown constants. Using the values of the 

element nodes' coordinates those summarized in Table 2 to determine these 

constants. 

 

Table 2   Bilinear 2D element nodal coordinates in natural coordinates 

Node 1ξ  2ξ  u  

1 -1.0 -1.0 1u  

2 1.0 -1.0 2u  

3 1.0 1.0 3u  

4 -1.0 1.0 4u  

 

Substituting from Table 2 into (3.30), we get: 

 

1 1

2 2

3 3

4 4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

u
u
u
u

β
β
β
β

− −⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥− −⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪− −⎣ ⎦⎩ ⎭ ⎩ ⎭

 (3.31) 

 

solving for 1β  to 4β , we get: 

 

1 1

2 2

3 3

4 4

1 1 1 1
1 1 1 11
1 1 1 14

1 1 1 1

u
u
u
u

β
β
β
β

⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥− −⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥− −⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪− −⎣ ⎦⎩ ⎭ ⎩ ⎭

 (3.32) 

substituting from equation (3.32) into equation (3.30), we obtain: 

 

 [ ]
1

2
1 2 1 2

3

4

1 1 1 1
1 1 1 111
1 1 1 14

1 1 1 1

u
u

u
u
u

ξ ξ ξ ξ

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥− − ⎪ ⎪⎢ ⎥= ⎨ ⎬⎢ ⎥− − ⎪ ⎪⎢ ⎥ ⎪ ⎪− −⎣ ⎦ ⎩ ⎭

 (3.33) 
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Figure  3.4   First shape function 

contours 

Figure  3.5   Second shape function 

contours 

 
Figure  3.6   Third shape function 

contours 

Figure  3.7   Fourth shape function 

contours 
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[ ]
1

2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

3

4

1 1 1 1 1
4

u
u

u
u
u

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

⎧ ⎫
⎪ ⎪
⎪ ⎪= − − + + − − + + + − + − ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

  (3.34) 

and renaming these terms to be as follows: 

 
( )( ) ( )( )

( )( ) ( )( )

1 1 2 2 1 2

3 1 2 4 1 2

1 11 1 , 1 1
4 4
1 11 1 , 1 1
4 4

ξ ξ ξ ξ

ξ ξ ξ ξ

Φ = − − Φ = + −

Φ = + + Φ = − +
 (3.35) 

where; iΦ  is the ith shape function. Figure  3.4, Figure  3.5, Figure  3.6, and 

Figure  3.7 display contour plots for the 2-D linear shape functions in the 

natural coordinates. 

 

Now, using the shape functions, any scalar variable can be written as 

follows: 

 [ ][ ]1 2 3 4 1 2 3 4u u u u u Τ= Φ Φ Φ Φ  (3.36) 

Usually finite element formulations contain differentiations w.r.t. ix , so 

it will be quite useful at this point to get these derivatives in order to be ready 

whenever it is needed. To get these derivatives, the derivatives w.r.t iξ  will be 

introduced and the transformation will be done using the transformation 

Jacobian. The iξ  derivatives are given by: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1

1 1

2 2

2 2

1 2 2 2

3 2 4 2

1 1 2 1

3 1 4 1

1 11 , 1
4 4
1 11 , 1
4 4

1 11 , 1
4 4
1 11 , 1
4 4

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

−
Φ = − Φ = −

−
Φ = + Φ = +

− −
Φ = − Φ = +

Φ = + Φ = −

 

  (3.37) 

this leads to the following equation: 

 [ ]1, 2, 3, 4, 1 2 3 4i i i i i
u u u u uξ ξ ξ ξ ξ

Τ⎡ ⎤= Φ Φ Φ Φ⎣ ⎦  (3.38) 
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To get differentiations with respect to ix  there should be a relation 

between the two coordinate systems; this can be done using the isoparametric 

element condition. I.e. use the same interpolation function to describe ix  we 

get: 

 [ ] ( ) ( ) ( ) ( )1 2 3 4 1 2 3 4i i i i ix x x x x
Τ

⎡ ⎤= Φ Φ Φ Φ ⎣ ⎦  (3.39) 

furthermore the following relations are obtained: 

 

1 2

1 1 1 2 1

1 2

2 1 2 2 2

i i i

i i i

x x
x x

x x
x x

ξ ξ ξ

ξ ξ ξ

∂Φ ∂Φ ∂ ∂Φ ∂
= +

∂ ∂ ∂ ∂ ∂
∂Φ ∂Φ ∂ ∂Φ ∂

= +
∂ ∂ ∂ ∂ ∂

 (3.40) 

or in a matrix form as follows: 

 

1 2

1 1 1 1

1 2

2 2 2 2

i i

i i

x x
x

x x
x

ξ ξ ξ

ξ ξ ξ

∂Φ ∂ ∂ ∂Φ⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬∂Φ ∂ ∂ ∂Φ⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (3.41) 

from equation (3.41) the transformation Jacobian is given by: 

 

1 2

1 1

1 2

2 2

x x

Jac
x x
ξ ξ

ξ ξ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥=
∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

 (3.42) 

and using matrix inversion we get: 

 

2 2

1 2 1 1

1 1

2 2 1 2

1
i i

i i

x x
x

x xJac
x

ξ ξ ξ

ξ ξ ξ

∂Φ ∂ ∂ ∂Φ⎧ ⎫ ⎡ ⎤ ⎧ ⎫−⎪ ⎪ ⎢ ⎥ ⎪ ⎪∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬∂Φ ∂ ∂ ∂Φ⎢ ⎥⎪ ⎪ ⎪ ⎪−⎢ ⎥⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (3.43) 

this leads to the following relation: 

 [ ]1, 2, 3, 4, 1 2 3 4i i i i ix x x x xu u u u u Τ⎡ ⎤= Φ Φ Φ Φ⎣ ⎦  (3.44) 

Equation (3.44) is to be used whenever a derivative in ix  is required. In 

order to use it the determinate of the transformation Jacobian defined in (3.42) 

should be calculated and this calls for the calculation of the derivatives in iξ . 

Those derivatives can be computed from equation (3.38). 



53 

3.4.2 Integration by Parts and Element Equations 

Expressing the conservation variables as a linear combination of the trial 

functions αΦ  we have: 

 ( ) ( ) ( ),t tα α= ΦU x x U  (3.45) 

and substituting from equation (3.45) into equation (3.28) and performing 

integration by parts we get: 

 

( ) ( ) ( )

1 1 1
,

1 1
, , ,

,

2 2

, 0
2 2

n n n n n
i i i i

n n n n
jij i ij i j

n
n

i i i i

n
n

ji i i i j
j j

d n d d

n d d

t n d t d

t t
n d d

x x

α βα β β β α β β

α β β α β β

α α

α α

∗ ∗
+ + +

Ω Γ Ω

∗ ∗
+ +

Γ Ω

∗ ∗

Γ Ω

∗ ∗

Γ Ω

Φ Φ Δ Ω+ Φ Φ Δ Γ − Φ Φ Δ Ω+

+ Φ Φ Δ Γ − Φ Φ Δ Ω+

+Δ Φ Γ −Δ Φ Ω +

⎛ ⎞Δ Δ∂ ∂
− Φ Γ + Φ Ω =⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫

U D U D U

E U E U

F F

a F a F

 

  (3.46) 

rearranging these terms and substituting from equation (3.23) we have: 

 ( ) 1n n n n n
αβ αβ β α α

++ Δ = +A B U H N  (3.47) 

where; 

 

( )

( )

( )

( )

2

1 , 2 , ,

2

,1 2

2

, ,

2

2

2

2

2

n
i i i j i j

n
ji i j i

n
jn n

i i i i
j

n n
n

i ji i
j

t
t s s d

t
t s s n d

t
t d

x

t
t n d

x

αβ α β α β α β

α β α βαβ

α α α

α αα

Ω

∗ ∗ ∗ ∗

Γ

Ω

∗ ∗ ∗ ∗

Γ

⎛ ⎞Δ
= Φ Φ −Δ Φ Φ + Φ Φ Ω⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞Δ

= Δ Φ Φ − Φ Φ Γ⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞∂Δ

= Δ Φ − Φ Ω⎜ ⎟⎜ ⎟∂⎝ ⎠
⎛ ⎞⎛ ⎞Δ ∂

= −Δ Φ + Φ Γ⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠

∫

∫

∫

∫

A a a a

B a a a

F
H F a

N F a F

 

  (3.48) 

Equation (3.47) along with (3.48) are called the element equations. They 

represent the first building block in the Euler solver. All other modules that will 
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be included in the solver are to serve these equations. It is clear that n
αβB  and 

n
αN  terms will cancel each other at the inter-elements boundaries. These terms 

will only have effect on elements at the boundaries. 

 

After assembling all the element equations for all elements in the 

solution domain, a large sparse system will result. This system has to be solved 

to obtain the time change 1n
β
+ΔU . The preconditioned GMRES sparse matrix 

solver discussed in  Appendix B will be employed for this purpose. 

3.4.3 Discontinuity-Capturing Operator 

As will be discussed in section  4.1, the FDV/MFDV methods are 

capable of introducing a satisfactory solution without the use of any further 

treatment. That is why only standard Galerkin method has been chosen. 

However, for strong shocks the solution suffers from Gibbs type errors at small 

time steps (small CFL values) that spoil the flowfield near the shock. To 

overcome this situation a Discontinuity-Capturing Operator (DCO) may be 

used. Using the same DCO presented in  [31]- [34], the FDV/MFDV methods 

presented a good performance. It will be proved by numerical experimentation 

that using this DCO will not affect the solution accuracy, it just guarantees the 

ripple-free solution. The form of this DCO is given by: 

 
i i

DCO d
x x

βα
βδ

Ω

∂Φ∂Φ
= Ω

∂ ∂∫ U  (3.49) 

where; δ  is the Discontinuity-capturing Factor (DCF) given by: 

 
1

1 2
, ,

, ,

rs itr jus t i u j
mn

uv v m w n

C a a U U
C g U U

δ
−⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.50) 

where; C  is the entropy variables' Jacobian, ia  is the convection Jacobian, and 

mng  is the contravariant metric tensor given by: 

 mn m n

p p

g
x x
ξ ξ∂ ∂

=
∂ ∂

 (3.51) 
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In equations (3.50) and (3.51), the indices , , , , ,i j k m n p  refer to the 

special coordinates (having the range 1,2 in 2-D case) and , , , , ,r s t u v w  refer to 

the equation number (having the range 1,2,3,4 in 2-D case). The reader is 

referred to  Appendix A for more details about Jacobian tensors. 

 

Adding the DCO given in equation (3.49) to the standard Galerkin 

integral given in equation (3.27), we get: 

 ( ), 0i
i i

d d
x x

βα
α βδ

Ω Ω

∂Φ∂Φ
Φ Ω+ Ω =

∂ ∂∫ ∫R U F U  (3.52) 

Where; δ  is the DCF given in equation (3.50). 

 

The term βU  can be either in " n " or " 1n + " time steps, which 

corresponds to either the explicit or implicit forms of the DCO, respectively. 

Since strong interactions are expected, the implicit form is adopted here. This 

modification will alter the element equations given in (3.47) and (3.48) to be as 

follows: 

 ( ) 1n n n n n
αβ αβ β α α

++ Δ = +A B U H N  (3.53) 

where; 

( )

( )

( )

( )

2

1 , 2 , ,

2

,1 2

2

, ,

2

2

2

2

2

n
i i i j i j

i i

n
ji i j i

n n
jn n

i i i i
j i i

n
n

i i

t
t s s d

x x

t
t s s n d

t
t d

x x x

t
t

βα
αβ α β α β α β

α β α βαβ

α
α α α

α αα

δ

δ

Ω

∗ ∗ ∗ ∗

Γ

Ω

∗ ∗ ∗

⎛ ⎞∂ΦΔ ∂Φ
= Φ Φ −Δ Φ Φ + Φ Φ + Ω⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞Δ
= Δ Φ Φ − Φ Φ Γ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞∂Δ ∂Φ ∂

= Δ Φ − Φ − Ω⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

Δ ∂
= −Δ Φ + Φ

∂

∫

∫

∫

A a a a

B a a a

F UH F a

N F a
n

j i
j

n d
x

∗

Γ

⎛ ⎞⎛ ⎞
Γ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ F

 

  (3.54) 

As will be demonstrated in  4.1, unlike the SUPG formulation the 

FDV/MFDV methods "optionally" need about 0.10 0.20∼  of the DCF to give 
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a shot free solution. It is clear from the definition of the DCO that it has 

virtually no effect on the solution domain where the gradients of the flow 

properties are smooth or of low gradients. So, only at the elements of high rate 

of variations the DCO is functioning. The discontinuity capturing factor δ  

(DCF) will be tuned in section  4.1. 

3.5 Boundary Conditions 

Back to the mathematical properties of the Euler system of equations, it 

is well known that an efficient and robust boundary conditions imposition 

technique is a crucial subject in all CFD problems. In this section the most 

important boundary conditions are discussed. These boundary conditions are 

used to simulate many practical flow situations that can be encountered in real 

flow problems. 

 

Since this thesis deals with the heart of the method and the various 

aspects in it, no special attention has been paid for implementing specialized 

problems that requires sophisticated boundary conditions. Great attention has 

been given to prove the applicability of the FDV/MFDV methods to various 

flow regimes by solving many numerical test cases that span various regimes 

and have mixed subsonic/transonic/supersonic flows (as will be demonstrated 

in  Chapter Four), which is the ultimate goal for this thesis. 

 

According to the theory of characteristics, the number of physical and 

numerical boundary conditions varies for different Mach numbers at both inlet 

and exit flows. In what follows some of the most common boundaries that can 

be encountered in many problems are introduced. For further analysis of the 

boundary conditions the reader is especially referred to  [3]. 

3.5.1 Inviscid Wall Boundary Condition (No Penetration) 

There are many ways to implement the wall boundary conditions inside 

the Euler solver. One of the most successful methods is the method of co-
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ordinates rotation given in J. N. Reddy  [12] and implemented successfully by 

many others including F. Moussaoui  [57]- [58] , T. E. Tezduyar et al. [58]. In 

this method the velocity components at the solid wall are transformed to the 

normal and tangential components, as shown in Figure  3.8. 

 

 

Figure  3.8   Co-ordinates rotation at a solid wall 

 

These axes are used to facilitate zeroing the normal velocity ( 0.0nu = ) 

and simulating the inviscid wall condition. Let the wall inclination angle be θ  

and the normal and tangential components are ,n tu u , respectively. The 

coordinate transformation matrix will take the form: 

 1

2

cos sin
sin cos

t

n

u u
u u

θ θ
θ θ

−⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.55) 

For the nodes on the solid boundary a new vector of unknowns is to be 

introduced via the following rotation matrix: 

 1

2

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

t

n

t t

u u
u u
e e

ρ ρ
ρ ρθ θ
ρ ρθ θ
ρ ρ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟=
⎜ ⎟ ⎜ ⎟⎜ ⎟−
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.56) 

Using the nodal transformation matrix given in (3.56) the 

implementation of the zero normal velocity becomes a straight forward process 

in the solver. 

θ  

nx  2x  
tx  

1x  
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3.5.2 Supersonic Inlet Boundary Condition 

For all the nodes on the supersonic inlet boundary, all the characteristic 

lines are entering the solution domain, hence the four flow properties 

( 1 2, , , tu u eρ ρ ρ ρ ) should be specified exactly (physical conditions). The 

implementation of this boundary condition in the Euler solver is a straight 

forward step. This can be done by zeroing the change vector 1n+ΔU  at the 

supersonic inlet boundary nodes. 

3.5.3 Supersonic Exit Boundary Condition 

For all the nodes on the supersonic exit boundary, all the characteristic 

lines are leaving the solution domain, hence the four flow properties 

( 1 2, , , tu u eρ ρ ρ ρ ) are left free. One of the finite element formulation benefits is 

that, all numerical boundary conditions (free variables) are specified from the 

shape function that was predefined in the Galerkin formulation. Unlike the 

FDMs which needs extra extrapolation techniques. So the simplest boundary is 

the supersonic exit where no changes are imposed on the element equations. 

3.5.4 Subsonic Inlet Boundary Condition 

In the subsonic inlet boundary condition, only three characteristic lines 

are entering the solution domain. Hence, three conditions have to be specified 

(physical conditions) at all nodes on this boundary and the other variable has to 

be left free (numerical boundary condition). 

 

The most common boundary conditions for the subsonic inlet boundary 

are the specification of the stagnation pressure ( 0P ) and stagnation density ( 0ρ ) 

along with the flow direction angle. The flow direction angle can be imposed 

similar to the no penetration condition discussed in  3.5.1. While the stagnation 

conditions can be implemented in the Euler solver using the relations between 

the stagnation and static properties. These relations are given by: 

 0 0P
P

γ
ρ
ρ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (3.57) 
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 ( )
1

2

0 2
i i

p p

u u
c T c T= +  (3.58) 

Rewriting equations (3.57) and (3.58) in terms of the conservation 

variables and using the Δ  terms only the following relations results in the 

following relations: 

 
( )

0
1 1 1 2 2 3 31

0 0

12 0
1
P U U U U U U Uγ

γ

γ γ
γ ρ ρ −

⎛ ⎞+
− Δ − Δ − Δ =⎜ ⎟− ⎝ ⎠

 (3.59) 

 
( )

2
10 32 2

1 1 2 3 42
0 1 1 1

0
1 2
P UU UU U U U U

U U U
γ

γ

γ
γ ρ

−⎛ ⎞
− Δ + Δ + Δ − Δ =⎜ ⎟⎜ ⎟−⎝ ⎠

 (3.60) 

 

Equations (3.59) and (3.60) are ready to be imposed on the subsonic 

inlet boundary nodes. 

3.5.5 Subsonic Exit Boundary Condition 

In the subsonic exit boundary condition, only one characteristic line is 

entering the solution. Hence, one condition (physical condition) has to be 

specified at all the nodes on this boundary and the other three variables have to 

be left free (numerical boundary conditions). The most common boundary 

condition for the subsonic exit boundary is the specification of the back 

pressure ( bP ). From equation (3.9), pressure is given by: 

 ( )
2 2
1 21

2t
u uP eγ ρ

⎛ ⎞+
= − −⎜ ⎟

⎝ ⎠
 (3.61) 

or in terms of the conservation variable we have: 

 ( )
2 2
2 3

4
1

1
2

U UP U
U

γ
⎛ ⎞+

= − −⎜ ⎟
⎝ ⎠

 (3.62) 

using the Δ  terms only to write the equation we get: 

 
( )2 2

2 3 32
1 2 3 42

1 1 1

0
2

U U UUU U U U
U U U
+

Δ − Δ − Δ + Δ =  (3.63) 
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Chapter Four  

Numerical Test Cases and Conclusions 

 

In this chapter, the FDV-FEM compressible Euler flow solver that has 

been theoretically developed in  Chapter Three will be tested to verify the claim 

that FDV/MFDV formulations are capable of dealing with all flow regimes 

seamlessly. Great attention has been given in selecting the test cases to span 

wide ranges of flow regimes that vary between subsonic, transonic, and 

supersonic. No specific attention has been given to certain type of problems or 

applications. The MFDV relations given in section  3.3.2 are used in all the 

following outputs. The CFL number has been fixed to 1.0 in all cases otherwise 

will be specified. 

 

The aim of the thesis, as mentioned in  1.5, is to develop a time-accurate 

flow solver for Euler equations and to verify the ability of the FDV formulation 

to deal with various flow situations. In section  4.1, the DCO that has been 

introduced in section  3.4.3 will be tuned. Unlike the SUPG formulation, FDV 

method only needs a fraction from the proposed DCF. This will be 

demonstrated by solving the famous shock reflection test case in section  4.1.1. 

Parametric analysis will be used to some extent to select the fraction of the 

DCF that virtually has no effect on the shock width and ensures ripple-free 

solution. To verify that the selection of the DCF fraction is not arbitrary, 

another problem which also has a known analytical solution (compression 

corner) will be solved in  4.1.2. 

 

Section  4.2 verifies the time accuracy of the FDV formulation via 

solving the shock tube problem. Section  4.3 verifies the ability of the solver to 

handle supersonic flows. This will be done by solving three complex internal 

flow problems in  4.3.1,  4.3.2, and  4.3.3. Section  4.4 deals with both the 

completely subsonic and subsonic/transonic flows. Both of sections  4.4.1 and 
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 4.4.2 are concerned with the solution of subsonic/transonic internal flow 

problems. Finally, section  4.5 introduces the conclusions that have been drawn 

from the thesis and the recommendations for future research to evolve the 

developed Euler equations solver to be a state of art. 

4.1 Discontinuity Capturing Factor Tuning 

As will be demonstrated from the results below, unlike the SUPG not all 

the DCF is needed in the FDV/MFDV formulations. A fraction of this factor is 

sufficient to guarantee ripple-free solution. This is due to the fact that FDV 

formulation already has a built in artificial viscosity term. In  4.1.1 some 

numerical experimentation are carried on the shock refection problem to select 

the fraction of the DCF that does not affect the shock thickness and ensures 

ripple-free solution. After that in  4.1.2, the supersonic compression corner 

problem is solved using the selected DCF fraction to ensure that this value is 

not arbitrary. 

4.1.1 Shock Reflection 

 

 

Figure  4.1   Shock reflection domain 

 

The shock reflection problem has become an interesting test case for the 

validation and testing of any Euler solver in its preliminary stages. This test 

case with its known steady state analytical solution and relatively complex 

4.1 

1.0 

29D  

23.3D  

M = 2.9 
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shock structure offers a very good opportunity to tune in any unsettled 

parameters in the solver. The solution domain of shock reflection from inviscid 

wall, as shown in Figure  4.1, is rectangular. At both inlet and upper boundaries, 

the supersonic inlet boundary condition is used with the following values: 

Inlet: 

 1

2

1.0, 2.9
0.0, 5.99075t

u
u e
ρ ρ
ρ ρ
= =
= =

  

Upper: 

 1

2

1.7, 4.453
-0.86, 9.87t

u
u e
ρ ρ
ρ ρ
= =
= =

  

On lower boundary, the inviscid wall (no-penetration) boundary 

condition is used and the exit boundary is left free being a supersonic exit. A 

uniform 120x60 grid is used to solve this test case. The inlet properties are used 

for the domain initial conditions. The discontinuity capturing factor is allowed 

to change in order to see the effect of its change on the shockwave structure. 

4.1.1.1 DCF = 0.0 

Figure  4.2 to Figure  4.9 plot the transient Mach number contours at 

various time steps. The solution reaches its steady state at t = 3.300 sec. The 

contours of the conservative variables, 1 2, , , tu u eρ ρ ρ ρ , at steady state are 

shown in Figure  4.10, Figure  4.11, Figure  4.12, and Figure  4.13, respectively. 

The Mach number steady state contours are shown in Figure  4.14, while 1 2,s s  

steady state contours are shown in Figure  4.15 and Figure  4.16, respectively. 

As stated earlier, the solution is satisfactory for the supersonic problems 

without the discontinuity operator and these results match very well the results 

obtained in  [59] and the analytical solution. 

 

It is clear that 1s  parameter resolves the solution itself and this 

interesting property for 1s  may be utilized if an adaptation technique is to be 

used. Figure  4.17 shows a comparison between the steady state Mach number 
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at 2 0.5x =  for this gird and a courser one (60x30) with the exact analytical 

solution. Calculating both the pointwise and spacewise norm errors from 

equations (C.2) and (C.4) for the steady state solution for the two grid sets will 

give the results in Table 3. 

 

Table 3   Space and point wise 2L  norm errors, shock reflection, DCF = 0.00 

 60x30 120x60 

2Space L
ε  0.06169 0.04501 

2Point %L
ε  0.01313 0.00837 

 

It is clear from both Figure  4.17 and Table 3 that as the grid gets finer 

the exact solution is approached. Also a higher over/under-shots can be 

observed for finer grids. This is due to the lost solution modes resulting from 

the grid selectivity. It is expected that when the DCF increases these under/over 

shots will start to disappear. 

 

Figure  4.2   Mach No. contours at t = 0.000, DCF = 0.00, shock reflection 

Figure  4.3   Mach No. contours at t = 0.118, DCF = 0.00, shock reflection 
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Figure  4.4   Mach No. contours at t = 0.352, DCF = 0.00, shock reflection 

Figure  4.5   Mach No. contours at t = 0.704, DCF = 0.00, shock reflection 

Figure  4.6   Mach No. contours at t = 1.000, DCF = 0.00, shock reflection 

Figure  4.7   Mach No. contours at t = 1.404, DCF = 0.00, shock reflection 

Figure  4.8   Mach No. contours at t = 2.000, DCF = 0.00, shock reflection 
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Figure  4.9   Mach No. contours at t = 2.500, DCF = 0.00, shock reflection 

Figure  4.10   Steady state ρ  contours, DCF = 0.00, shock reflection 

Figure  4.11   Steady state 1uρ  contours, DCF = 0.00, shock reflection 

Figure  4.12   Steady state 2uρ  contours, DCF = 0.00, shock reflection 

Figure  4.13   Steady state teρ  contours, DCF = 0.00, shock reflection 
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Figure  4.14   Steady state Mach No. contours, DCF = 0.0, shock reflection 

Figure  4.15   Steady state 1s  contours, DCF = 0.00, shock reflection 

Figure  4.16   Steady state 2s  contours, DCF = 0.00, shock reflection 

 
Figure  4.17   Analytical Vs numerical solution  

at 2 0.5x = , DCF = 0.00, shock reflection 
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4.1.1.2 Comparison between Various DCFs 

In order to demonstrate the effect of the discontinuity capturing factor 

changing, a parametric study has been investigated to the same shock reflection 

problem stated earlier for the two grid sets. 

 

The first grid is 60x30 and the other one is 120x60. Figure  4.18 shows 

the whole span steady state Mach number for the various values of the DCF at 

2 0.5x =  for the first grid set, while Figure  4.19 and Figure  4.20 show zoom in 

for the first and second shocks, respectively. It is evident that as the DCF 

increases the under/over shots system disappear and also the shockwave 

become smeared. A more precise look will reveal the fact that the values 

between 0.15 and 0.25 give a clear pattern without effective smearing in the 

shock structure. 

 

The same data has been plotted for the second grid (120x60) in Figure 

 4.21, Figure  4.22, and Figure  4.23. The same trend that has been observed in 

the first set has been obtained here also. But the most interesting feature that 

can be seen in this data set is that; the smearing out doesn't depend on the 

spatial distribution of the grid nodes, it is dependent on the number of grid 

nodes. This note is vital if the grid adaptation is considered because as the grid 

gets adapted the smearing out will not be a problem. 

 

By this parametric study, the DCF has settled itself to the values 

between 0.15 and 0.25. Higher values can be used as the grid gets finer. But for 

moderate grids these values are of good effect on the under/over shots with 

virtually no effect on the shockwave thickness. The next subsection contains 

the data for DCF = 0.20. 
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Figure  4.18   DCF effect at 2 0.5x = ,  

shock reflection, 60x30 

 
Figure  4.19   Zoom on the first shock at 2 0.5x = ,  

shock reflection, 60x30 
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Figure  4.20   Zoom on the second shock at 2 0.5x = ,  

shock reflection, 60x30 

 
Figure  4.21   DCF effect at 2 0.5x = ,  

shock reflection, 120x60 
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Figure  4.22   Zoom on the first shock at 2 0.5x = ,  

shock reflection, 120x60 

 
Figure  4.23   Zoom on the second shock at 2 0.5x = ,  

shock reflection, 120x60 
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4.1.1.3 DCF = 0.20 

Figure  4.24 to Figure  4.31 plot the transient Mach number contours at 

various time steps. Figure  4.32, Figure  4.33, Figure  4.34, and Figure  4.35 show 

the contour plot for the conservation variables 1 2, , , tu u eρ ρ ρ ρ , respectively at 

steady state. 

 

The smoothing effect of the shock capturing operator can be clearly 

noticed. Figure  4.36, Figure  4.37, and Figure  4.38 show the steady state Mach 

number, 1s , and 2s  contours, respectively. Figure  4.39 plots the comparison 

between the two gird sets at the settled DCF for 2 0.5x = . 

 

Calculating both the pointwise and spacewise norm errors from 

equations (C.2) and (C.4) for the steady state solution for the two grid sets will 

give the results in Table 4. It is clear from both Figure  4.39 and Table 4 that as 

the grid gets finer the exact solution is approached. Also the smoothing effect 

of the DCF is evident from the peakless solution. 

 

Table 4   Space and point wise 2L  norm errors, shock reflection, DCF = 0.20 

 60x30 120x60 

2Space L
ε  0.07529 0.05833 

2Point %L
ε  0.01447 0.01276 

 

Figure  4.24   Mach No. contours at t = 0.000, DCF = 0.20, shock reflection 
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Figure  4.25   Mach No. contours at t = 0.118, DCF = 0.20, shock reflection 

Figure  4.26   Mach No. contours at t = 0.354, DCF = 0.20, shock reflection 

Figure  4.27   Mach No. contours at t = 0.705, DCF = 0.20, shock reflection 

Figure  4.28   Mach No. contours at t = 1.000, DCF = 0.20, shock reflection 

Figure  4.29   Mach No. contours at t = 1.405, DCF = 0.20, shock reflection 
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Figure  4.30   Mach No. contours at t = 2.015, DCF = 0.20, shock reflection 

Figure  4.31   Mach No. contours at t = 2.500, DCF = 0.20, shock reflection 

Figure  4.32   Steady state ρ  contours, DCF = 0.20, shock reflection 

Figure  4.33   Steady state 1uρ  contours, DCF = 0.20, shock reflection 

Figure  4.34   Steady state 2uρ  contours, DCF = 0.20, shock reflection 
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Figure  4.35   Steady state teρ  contours, DCF = 0.20, shock reflection 

Figure  4.36   Steady state Mach No. contours, DCF = 0.20, shock reflection 

Figure  4.37   Steady state 1s  contours, DCF = 0.20, shock reflection 

Figure  4.38   Steady state 2s  contours, DCF = 0.20, shock reflection 
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Figure  4.39   Analytical Vs numerical solution  

at 2 0.5x = , DCF = 0.20, shock reflection 

4.1.2 Compression Corner 

 

 

Figure  4.40   Compression corner domain 

 

To make sure that the selection of DCF = 0.20 is not arbitrary for 

satisfactory performance of the DCO; another test case with known analytical 

steady state solution has been solved. The compression corner problem is 

shown in Figure  4.40. This test case constitutes to a typical oblique shockwave 

problem. 

 

M = 1.84 1.0 

2.0

0.2 
45D  
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The solution domain is discretized using 120x80 bilinear quadrilateral 

elements. The no-penetration boundary condition is applied on both the upper 

and lower boundaries and the exit boundary is left free being supersonic. The 

inlet boundary is supersonic and the following values have been used: 

 1

2

1.0, 1.84
0.0, 3.47855t

u
u e
ρ ρ
ρ ρ
= =
= =

  

Figure  4.41 to Figure  4.45 show the transient Mach number contours at 

various time steps. The steady state solution is obtained at t = 2.514 sec. Figure 

 4.46, Figure  4.47, Figure  4.48, and Figure  4.49 show the steady state contour 

plot for the conservation variables 1 2, , , tu u eρ ρ ρ ρ , respectively. 

 

Again the shock capturing operator effect is evident in the outputs. 

Figure  4.50, Figure  4.51, and Figure  4.52 show the steady state Mach number, 

1s , and 2s  contours, respectively. Figure  4.53 and Figure  4.54 show the effect 

of grid refinement on the shockwave at 2 0.5x = . 

 

Calculating both the pointwise and spacewise norm errors from 

equations (C.2) and (C.4) for the steady state solution for the two grid sets will 

give the results in Table 5. It is clear from Figure  4.54 and Table 5 that as the 

grid gets finer near the shock, the exact solution is approached without 

under/over shots. 

 

Table 5   Space and point wise 2L  norm errors, compression corner 

 60x40 120x80 

2Space L
ε  0.041646 0.019929 

2Point %L
ε  0.01477 0.009190 
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Figure  4.41   Mach No. contours at t = 0.000, DCF = 0.20, compression corner 

Figure  4.42   Mach No. contours at t = 0.179, DCF = 0.20, compression corner 

Figure  4.43   Mach No. contours at t = 0.403, DCF = 0.20, compression corner 
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Figure  4.44   Mach No. contours at t = 0.812, DCF = 0.20, compression corner 

Figure  4.45   Mach No. contours at t = 1.494, DCF = 0.20, compression corner 

Figure  4.46   Steady state ρ  contours, DCF = 0.20, compression corner 
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Figure  4.47   Steady state 1uρ  contours, DCF = 0.20, compression corner 

Figure  4.48   Steady state 2uρ  contours, DCF = 0.20, compression corner 

Figure  4.49  Steady state teρ  contours, DCF = 0.20, compression corner 



80 

Figure  4.50   Steady state Mach No. contours, DCF = 0.20, compression corner 

Figure  4.51   Steady state 1s  contours, DCF = 0.20, compression corner 

Figure  4.52   Steady state 2s  contours, DCF = 0.20, compression corner 
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Figure  4.53   Analytical Vs numerical solution  

at 2 0.5x = , DCF = 0.20, compression corner 

 
Figure  4.54   Zoom in the shockwave at 2 0.5x = ,  

DCF = 0.20, compression corner 
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4.2 Time Dependent Test Case: Shock Tube Problem 

The transient response accuracy of FDV formulation has been validated 

for the solution of the linear 1-D wave equation and the inviscid Burgers 

equation in section  2.5. To validate the ability of the developed FDV-FEM 

compressible Euler flow solver to accurately predict the transient behavior for 

inviscid flow problems, a famous test case with analytical solution has been 

solved. This test case is the shock tube problem (Riemann problem). 

 

Initially, there is a diaphragm that separates two different gases at rest. 

Each has its pressure and density. Upstream, state L is defined by ,L LP ρ , and 

downstream state R is defined by ,R RP ρ . Suddenly this diaphragm is removed 

generating shockwave, contact discontinuity, and expansion fan as shown in 

Figure  4.55. 

 

 

Figure  4.55   Shock tube domain 

 

It is a simple concept problem, but a very difficult test case for any 

numerical scheme because it has very different flow regimes in the same 

State L State R 

Diaphragm At t = 0.0 

State L State R 

Expansion 

Fan 
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disconinuity 

Shockwave 

At t > 0.0 
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domain. The analytical solution of this problem can be found in any gas 

dynamics or computational fluid dynamics textbook such as  [1]- [4]. The 

problem is essentially one dimensional, so the domain may be discretized by 

very small number of element in the lateral direction without altering the 

solution accuracy. On the other hand the chord wise have significant variation 

and heavy grid is essential for good resolution. A grid of 1000x4 has been 

selected to solve this test case. 

 

Letting 510 , 1.0L LP ρ= = , 410 , 0.125R RP ρ= =  and setting the CFL 

number to 0.10, the following results have been obtained. Figure  4.56 plots the 

variation of the density, while Figure  4.57 presents the variation of the 

normalized 1uρ  at different time instants. Figure  4.58 and Figure  4.59 shows 

the variation of the normalized teρ  and the Mach number, respectively. 

 

Figure  4.60 and Figure  4.61 plot the variation of the normalized pressure 

and relative change in entropy, respectively. Same as observed in section  2.5, 

the FDV formulation succeeded in accurate prediction for the transient 

response of a complicated convection problem. The method could recover the 

solution with time without major losses in the convected solution. Good 

resolution for the contact discontinuity as well as the shockwave has been 

obtained. 

 

Figure  4.61 is of great importance because it illustrates the fact that the 

method provides numerical diffusion for the regions in the flowfield that needs 

it. For smooth or small variations the method virtually gives no dissipation. 

This is evident from the zero entropy change provided in all regions expect 

near the contact discontinuity and the shockwave. 
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Figure  4.56   ρ  vs 1x , shock tube 

 
Figure  4.57   1uρ  vs 1x , shock tube 
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Figure  4.58   teρ  vs 1x , shock tube 

 
Figure  4.59   Mach No. vs 1x , shock tube 
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Figure  4.60   Pressure vs 1x , shock tube 

 
Figure  4.61   Entropy change vs 1x , shock tube 
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4.3 Supersonic Flows 

This section is devoted to the validation of the FDV/MFDV 

formulations in handling the supersonic flows. The discussion is limited to 

internal flows only.  [60] has been submitted for publication during this research 

work. This paper contains discussions and validations for the ability of the 

MFDV formulation to correctly analyze the supersonic internal flow problems. 

Some of [60] results are repeated here in this section for convenience. 

 

In the next three subsections three problems will be investigated. The 

complexity of these problems varies significantly. The first problem is of 

relatively simple shock structure than the second one. The third problem is of 

special importance because of its bow shock structure encountered in its second 

case. 

4.3.1 Extended Compression Corner 

The extended compression corner problem is shown in Figure  4.62. The 

value of 0.2 has been chosen for the height of the ramp. The solution domain is 

discretized using 120x60 uniform bilinear quadrilateral elements. The value of 

0.20 is used for the DCF. 

 

 

Figure  4.62   Extended compression corner domain 
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The inlet boundary is supersonic and the following values have been 

used: 

 1

2

1.0, 1.90
0.0, 3.47855t

u
u e
ρ ρ
ρ ρ
= =
= =

 

 

Again the no-penetration boundary condition is applied on both the 

upper and lower boundaries and the exit boundary is left free being supersonic. 

 

Figure  4.63 to Figure  4.70 show the transient Mach number contours at 

various time steps. The steady state solution is reached at t = 3.321 sec. Figure 

 4.71, Figure  4.72, Figure  4.73, and Figure  4.74 show the contour plot for the 

conservation variables 1 2, , , tu u eρ ρ ρ ρ , respectively, at steady state. Figure 

 4.75, Figure  4.76, and Figure  4.77 show the steady state Mach number, 1s , and 

2s  contours, respectively. 

 

Figure  4.78 shows the effect of grid refinement on the solution at 

2 0.5x = . It is clear that the FDV/MFDV formulation has succeeded in 

recovering the interference between the reflected shock and the expansion fan. 

Also the method is capable of approaching the exact solution by increasing the 

computational grid. 

 

Figure  4.63   Mach No. contours at t = 0.000, extended compression corner 
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Figure  4.64   Mach No. contours at t = 0.259, extended compression corner 

Figure  4.65   Mach No. contours at t = 0.517, extended compression corner 

Figure  4.66   Mach No. contours at t = 0.712, extended compression corner 

Figure  4.67   Mach No. contours at t = 0.907, extended compression corner 
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Figure  4.68   Mach No. contours at t = 1.300, extended compression corner 

Figure  4.69   Mach No. contours at t = 1.760, extended compression corner 

Figure  4.70   Mach No. contours at t = 2.490, extended compression corner 

Figure  4.71   Steady State ρ  contours, extended compression corner 
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Figure  4.72   Steady State 1uρ  contours, extended compression corner 

Figure  4.73   Steady State 2uρ  contours, extended compression corner 

Figure  4.74   Steady State teρ  contours, extended compression corner 

Figure  4.75   Steady State Mach No. contours, extended compression corner 
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Figure  4.76   Steady State 1s  contours, extended compression corner 

Figure  4.77   Steady State 2s  contours, extended compression corner 

 
Figure  4.78   Effect of grid refinement at 2 0.5x = ,  

extended compression corner 
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4.3.2 Half Wedge in a Supersonic Wind Tunnel 

Figure  4.79 shows the configuration of a half wedge that is placed in a 

supersonic-wind-tunnel. The half wedge maximum height has been set to 0.04. 

The solution domain is discretized using 120x60 uniform bilinear quadrilateral 

elements. The value of 0.20 is used for the DCF. The inlet boundary is 

supersonic and the following values have been used: 

 1

2

1.0, 1.40
0.0, 2.76575t

u
u e
ρ ρ
ρ ρ
= =
= =

  

 

 

Figure  4.79   Half wedge domain 

 

The inviscid wall boundary condition is applied on both the upper and 

lower boundaries and the exit boundary is left free being supersonic. 

 

Figure  4.80 to Figure  4.88 show the transient Mach number contours at 

various time steps. The steady state solution is obtained at t = 9.597 sec. Figure 

 4.89, Figure  4.90, Figure  4.91, and Figure  4.92 plot the contours for the 

conservation variables 1 2, , , tu u eρ ρ ρ ρ  at the steady state, respectively. 

 

Figure  4.93, Figure  4.94, and Figure  4.95 show the Mach number, 1s , 

and 2s  steady state contours, respectively. Figure  4.96 shows the effect of grid 

refinement on the solution at 2 0.5x = . 

 

M = 1.4 

0.04
1.0 1.0 1.0
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It is clear that the FDV/MFDV formulation succeeded in recovering the 

interference between the reflected shock and the expansion fan as well as the 

interaction between the two intersecting shocks. Also as observed before, the 

method is capable of approaching the exact solution by increasing the 

computational grid. 

 

 

Figure  4.80   Mach No. contours at t = 0.000, half wedge 

Figure  4.81   Mach No. contours at t = 0.317, half wedge 

Figure  4.82   Mach No. contours at t = 0.714, half wedge 

 

 



95 

 

Figure  4.83   Mach No. contours at t = 1.194, half wedge 

Figure  4.84   Mach No. contours at t = 1.757, half wedge 

Figure  4.85   Mach No. contours at t = 2.559, half wedge 

Figure  4.86   Mach No. contours at t = 3.038, half wedge 
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Figure  4.87   Mach No. contours at t = 4.079, half wedge 

Figure  4.88   Mach No. contours at t = 5.044, half wedge 

Figure  4.89   Steady State ρ  contours, half wedge 

Figure  4.90   Steady State 1uρ  contours, half wedge 
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Figure  4.91   Steady State 2uρ  contours, half wedge 

Figure  4.92   Steady State teρ  contours, half wedge 

Figure  4.93   Steady State Mach No. contours, half wedge 

Figure  4.94   Steady State 1s  contours, half wedge 
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Figure  4.95   Steady State 2s  contours, half wedge 

 
Figure  4.96   Effect of grid refinement at  

2 0.5x = , half wedge 

4.3.3 Circular Arc Bump in Supersonic Wind Tunnel 

This problem is the third and final test case to verify the ability of the 

FDV/MFDV formulation in handling supersonic flows. In this test case a 

circular arc is placed on the lower wall of a supersonic wind tunnel. Two 

numerical experimentation setups have been investigated. 

 

The first is close to the previous test case. In which the height of the arc 

is relatively small. While the second one offer a relatively complex flow 

situation when the height of the circular arc increases. This is due to the bow 
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shock that will be generated. In the second case the height of the wind tunnel 

section will be increased to ensure no interference from the upper wall as much 

as possible. While in the first case the upper wall was seated relatively close to 

the lower wall to see how the proposed theory will resolve the interferences 

from the shocks and the expansion over the circular arc. 

4.3.3.1 0.04 Circular Arc 

Figure  4.97 shows the configuration of a circular arc that is placed in a 

supersonic wind tunnel. The circular arc maximum height has been set to 0.04. 

The solution domain is discretized using 120x60 uniform bilinear quadrilateral 

elements. The value of 0.20 is used for the DCF. 

 

 

Figure  4.97   0.04 circular arc domain 

 

The inlet boundary is supersonic and the following values have been 

used: 

 1

2

1.0, 1.65
0.0,  3.147t

u
u e
ρ ρ
ρ ρ
= =
= =

  

The inviscid wall boundary condition is applied on both the upper and 

lower boundaries and the exit boundary is left free being supersonic. Figure 

 4.98 to Figure  4.105 show the transient Mach number contours at various time 

steps. The steady state solution is obtained at t = 4.328 sec. Figure  4.106, 

Figure  4.107, Figure  4.108, and Figure  4.109 show the steady state contours of 

the conservation variables 1 2, , , tu u eρ ρ ρ ρ , respectively. Figure  4.110, Figure 

1.0 1.01.0

1.0 
M = 1.65 
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 4.111, and Figure  4.112 show the Mach number, 1s , and 2s  steady state 

contours, respectively. Figure  4.113 shows the effect of grid refinement on the 

solution at 2 0.5x = . Again, the FDV/MFDV formulation succeeded in 

recovering the interference between the reflected shock and the expansion over 

the circular arc as well as the intersection of the two interfering shocks. Also as 

observed before, the method is capable of approaching the exact solution by 

increasing the computational grid. 

 

Figure  4.98   Mach No. contours at t = 0.000, 0.04 circular arc 

Figure  4.99   Mach No. contours at t = 0.222, 0.04 circular arc 

Figure  4.100   Mach No. contours at t = 0.515, 0.04 circular arc 
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Figure  4.101   Mach No. contours at t = 0.807, 0.04 circular arc 

Figure  4.102   Mach No. contours at t = 1.100, 0.04 circular arc 

Figure  4.103   Mach No. contours at t = 1.539, 0.04 circular arc 

Figure  4.104   Mach No. contours at t = 2.056, 0.04 circular arc 
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Figure  4.105   Mach No. contours at t = 3.092, 0.04 circular arc 

Figure  4.106   Steady State ρ  contours, 0.04 circular arc 

Figure  4.107   Steady State 1uρ  contours, 0.04 circular arc 

Figure  4.108   Steady State 2uρ  contours, 0.04 circular arc 
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Figure  4.109   Steady State teρ  contours, 0.04 circular arc 

Figure  4.110   Steady State Mach No. contours, 0.04 circular arc 

Figure  4.111   Steady State 1s  contours, 0.04 circular arc 

Figure  4.112   Steady State 2s  contours, 0.04 circular arc 
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Figure  4.113   Effect of grid refinement at  

2 0.5x = , 0.04 circular arc 

4.3.3.2 0.20 Circular Arc 

Figure  4.114 shows the configuration of a circular arc that is placed in a 

supersonic wind tunnel. The circular arc maximum height and the wind tunnel 

section height have been set to 0.20 and 10.0, respectively. It is believed that 

separating the upper wall from the lower wall with large span will contribute to 

the solution and minimize the interferences between the detached shock and the 

upper wall. The solution domain is discretized using 100x100 bilinear 

quadrilateral elements clustered in the lateral direction with expansion ratio 

1.035. The value of 0.20 has been used for the DCF. 

 

The inlet boundary is supersonic and the same values that have been 

used in the previous problem are used again: 

 1

2

1.0, 1.65
0.0,  3.147t

u
u e
ρ ρ
ρ ρ
= =
= =

  

Same as before, the inviscid wall boundary condition is applied on both 

the upper and lower boundaries and the exit boundary is left free being 

supersonic. 
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Figure  4.114   0.20 circular arc domain 

 

Figure  4.115 to Figure  4.124 show the transient Mach number contours 

at various time steps. The steady state solution is obtained at t = 4.328 sec. 

Figure  4.125, Figure  4.126, Figure  4.127, and Figure  4.128 show the steady 

state contours of the conservation variables 1 2, , , tu u eρ ρ ρ ρ , respectively. 

Figure  4.129 and Figure  4.130 show the steady state Mach number and 

pressure contours, respectively, while Figure  4.131 and Figure  4.132 plot the 1s  

and 2s  contours, respectively, at steady state. Figure  4.133 shows the effect of 

grid refinement on the solution at 2 0.6x = . 

 

Again, the FDV/MFDV formulation succeeded in recovering the 

detached shock generated from the relatively large deflection angle 

encountered at the first point of the circular arc. The maximum deflection angle 

for attached shockwave can be computed from the oblique shockwave theory. 

The results is; at Mach 1.65 the maximum angle is 15.8 degrees; while the 

deflection angle in this test case is 35.5 degrees and this generate the bow 

(detached) shockwave. In this case both supersonic and subsonic flows exist in 

10.0 M = 1.65 

1.0 1.0 2.0 
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the same domain of study and it is evident that FDV method could handle such 

a situation. Also as observed before, the method approaches the exact solution 

by increasing the computational grid. 

4.4 Subsonic/Transonic Flows 

This section is devoted to the validation of the FDV/MFDV 

formulations in handling the subsonic/transonic flows. The discussion is 

limited to internal flows only. (It is expected to publish soon more results to 

demonstrate the FDV/MFDV capabilities to correctly analyze the 

subsonic/transonic internal flow problems.) 

 

In the next two subsections two problems will be investigated for 

completely subsonic and subsonic/transonic situations. The complexity of these 

problems comes from the physics involved in enforcing the boundary 

conditions. 

 

The first problem is a convergent-divergent nozzle. The second problem 

is a circular arc that is similar to that of the supersonic flow but now it is solved 

for subsonic/transonic flow. In both test cases the inviscid wall boundary 

condition is applied on the upper and lower boundaries, while subsonic inlet 

and subsonic exit boundary conditions are imposed on the inlet and exit 

sections, respectively. To allow the inlet Mach number to change, the enforced 

back pressure should be changed. For each problem, two data sets will be 

presented each data set constitutes a different back pressure. 
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Figure  4.115   Mach No. contours  

at t = 0.000, 0.20 circular arc 

Figure  4.116   Mach No. contours  

at t = 0.221, 0.20 circular arc 

  
Figure  4.117   Mach No. contours  

at t = 0.533, 0.20 circular arc 

Figure  4.118   Mach No. contours  

at t = 1.043, 0.20 circular arc 
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Figure  4.119   Mach No. contours  

at t = 2.081, 0.20 circular arc 

Figure  4.120   Mach No. contours  

at t = 3.025, 0.20 circular arc 

  
Figure  4.121   Mach No. contours  

at t = 4.078, 0.20 circular arc 

Figure  4.122   Mach No. contours  

at t = 5.029, 0.20 circular arc 
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Figure  4.123   Mach No. contours  

at t = 6.086, 0.20 circular arc 

Figure  4.124   Mach No. contours  

at t = 10.003, 0.20 circular arc 

  
Figure  4.125   Steady State ρ  

 contours, 0.20 circular arc 

Figure  4.126   Steady State 1uρ  

 contours, 0.20 circular arc 
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Figure  4.127   Steady State 2uρ  

 contours, 0.20 circular arc 

Figure  4.128   Steady State teρ  

 contours, 0.20 circular arc 

  
Figure  4.129   Steady State Mach No.

 contours, 0.20 circular arc 

Figure  4.130   Steady State Pressure 

 contours, 0.20 circular arc 
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Figure  4.131   Steady State 1s  

 contours, 0.20 circular arc 

Figure  4.132   Steady State 2s  

 contours, 0.20 circular arc 

 
Figure  4.133   Effect of grid refinement at  

2 0.6x = , 0.20 circular arc 
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4.4.1 Convergent-Divergent Nozzle 

Figure  4.134 shows the configuration of a convergent-divergent nozzle. 

The nozzle convergent and divergent parts shapes are assumed to vary 

cubically with 1x . Letting 1 0.20h = , 2 0.10h = , and 3 0.15h =  the upper profile 

will have the equation: 

 
3 2
1 1 1

2 3 2
1 1 1 1

1.6 1.2 0.2 0.0 0.5

0.8 1.8 1.2 0.35 0.5 1.0

x x x
x

x x x x

⎧ − + ≤ ≤⎪= ⎨
− + − + < ≤⎪⎩

  

 

 

Figure  4.134   Convergent-divergent nozzle domain 

 

The lower profile is assumed to be exactly the same as the upper but 

inversed in the 2x  direction (having negative sign). The stagnation pressure 

( 0P ) and stagnation density ( 0ρ ) at the inlet are fixed to the values: 

 0

0

3.39
1.13

P
ρ

=

=
  

The solution domain is discretized using 90x30 uniform bilinear 

quadrilateral elements. The value of 0.20 is used for the DCF. Two data sets are 

obtained for two different back pressures. The first case is subsonic/transonic 

case where a shockwave is standing in the convergent part, while the second 

one constitutes to a completely subsonic flow. 

1h  
2h  3h  

1.0 
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4.4.1.1 Subsonic/Transonic Flow, 2.48bP =  

In order to encounter a shockwave in the convergent part the back 

pressure should be relatively low. So the value of 2.48 has been used. Figure 

 4.135, Figure  4.136, Figure  4.137, and Figure  4.138 show the contours of the 

conservation variables 1 2, , , tu u eρ ρ ρ ρ , respectively. Figure  4.139, Figure 

 4.140, and Figure  4.141 show the Mach number contours, pressure contours, 

and streamlines, respectively, while Figure  4.142 and Figure  4.143 plot the 1s  

and 2s  contours, respectively. Figure  4.144 shows the comparison with the 

exact quasi one-dimensional solution. 

 

It is evident that FDV/MFDV formulation succeeded in recovering the 

shock generated in the convergent part. In this case both subsonic and transonic 

flows exist in the same domain of study and it is clear that FDV method could 

handle such a situation. It is noticeable that the solution is symmetric about the 

center line. This is due to the symmetry of the nozzle shape. Figure  4.137 is of 

special importance because it indicates that the solution is symmetric with zero 

2u  on the centerline. As shown in Figure  4.144, the solution is comparable to 

the quasi one dimensional solution. The deviation is due to the 2-D nature of 

the generated shockwave. 

 

Figure  4.135   Steady state ρ  contours, Nozzle, 2.48bP =  
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Figure  4.136   Steady state 1uρ  contours, Nozzle, 2.48bP =  

Figure  4.137   Steady state 2uρ  contours, Nozzle, 2.48bP =  

Figure  4.138   Steady state teρ  contours, Nozzle, 2.48bP =  
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Figure  4.139   Steady state Mach No. contours, Nozzle, 2.48bP =  

Figure  4.140   Steady state Pressure contours, Nozzle, 2.48bP =  

Figure  4.141   Steady state Streamlines, Nozzle, 2.48bP =  
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Figure  4.142   Steady state 1s  contours, Nozzle, 2.48bP =  

Figure  4.143   Steady state 2s  contours, Nozzle, 2.48bP =  

 
Figure  4.144   Comparison with exact quasi 1-D solution,  

Nozzle, 2.48bP =  
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4.4.1.2 Completely Subsonic flow, 3.27bP =  

In order to have a completely subsonic flow thought out the nozzle, the 

back pressure should be relatively high. So the value of 3.27 has been used. 

Figure  4.145, Figure  4.146, Figure  4.147, and Figure  4.148 show the contours 

of the conservation variables 1 2, , , tu u eρ ρ ρ ρ , respectively. Figure  4.149, 

Figure  4.150, and Figure  4.151 show the Mach number contours, pressure 

contours, and streamlines, respectively, while Figure  4.152 and Figure  4.153 

plot the 1s  and 2s  contours, respectively. Figure  4.154 shows the comparison 

with the exact quasi one-dimensional solution. 

 

It is evident that FDV/MFDV formulation succeeded in handling the 

completely subsonic flow with relatively low Mach number. Again the solution 

symmetry is obtained. Figure  4.147 is of special importance because it 

indicates that the solution is symmetric with zero 2u  on the centerline. A shown 

in Figure  4.154, the solution is comparable to the quasi one dimensional 

solution. The deviation is due to the 2-D nature of the solution. 

 

Figure  4.145   Steady state ρ  contours, Nozzle, 3.27bP =  
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Figure  4.146   Steady state 1uρ  contours, Nozzle, 3.27bP =  

Figure  4.147   Steady state 2uρ  contours, Nozzle, 3.27bP =  

Figure  4.148   Steady state teρ  contours, Nozzle, 3.27bP =  
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Figure  4.149   Steady state Mach No. contours, Nozzle, 3.27bP =  

Figure  4.150   Steady state Pressure contours, Nozzle, 3.27bP =  

Figure  4.151   Steady state Streamlines, Nozzle, 3.27bP =  
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Figure  4.152   Steady state 1s  contours, Nozzle, 3.27bP =  

Figure  4.153   Steady state 2s  contours, Nozzle, 3.27bP =  

 
Figure  4.154   Comparison with exact quasi 1-D solution,  

Nozzle, 3.27bP =  
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4.4.2 Circular Arc Bump in Subsonic Wind Tunnel 

Figure  4.155 shows the configuration of a circular arc placed on the 

lower wall of a subsonic wind tunnel. The bump maximum height has been set 

to 0.10. The stagnation pressure ( 0P ) and stagnation density ( 0ρ ) at the inlet 

are fixed to: 

 0

0

3.39
1.13

P
ρ

=

=
  

 

Figure  4.155   0.10 Circular arc domain 

 

The solution domain is discretized using 90x30 bilinear quadrilateral 

elements with expansion ratio of 1.03 in the lateral direction. Forty elements 

have been placed on the bump surface. The value of 0.20 has been used for the 

DCF. Two data sets have been obtained for two different back pressures. The 

first case is subsonic/transonic case where a supersonic pocket has been 

generated over the bump surface, while the second one constitutes a completely 

subsonic flow. 

4.4.2.1 Subsonic/Transonic Flow, 2.48bP =  

In order to have a supersonic pocket, the inlet Mach number should be 

relatively high and this asks for low back pressure. So the value of 2.48 has 

been used. Figure  4.156, Figure  4.157, Figure  4.158, and Figure  4.159 show the 

contours of the conservation variables 1 2, , , tu u eρ ρ ρ ρ , respectively. Figure 

1.0 1.0 1.0 

1.0 

0.10 
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 4.160 plots the Mach number contours, while Figure  4.161 and Figure  4.162 

plot 1s  and 2s  contours, respectively. 

 

From the results, it can be concluded that FDV/MFDV formulation 

succeeded in resembling the partial shock generated in the supersonic pocket. 

In this case both subsonic and transonic flows exist in the same domain of 

study and it is evident that FDV method could handle such a situation. This 

problem is harder than the nozzle case because the shock is not blocking the 

entire span. This solution matches the results obtained in  [57] very well. 

Figure  4.156   Steady state ρ  contours, transonic circular arc 

Figure  4.157   Steady state 1uρ  contours, transonic circular arc 

Figure  4.158   Steady state 2uρ  contours, transonic circular arc 
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Figure  4.159   Steady state teρ  contours, transonic circular arc 

Figure  4.160   Steady state Mach No. contours, transonic circular arc 

Figure  4.161   Steady state 1s  contours, transonic circular arc 

Figure  4.162   Steady state 2s  contours, transonic circular arc 
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4.4.2.2 Completely Subsonic Flow, 3.16bP =  

In order to have a completely subsonic flow through out the circular arc 

domain, the back pressure should be relatively high. So the value of 3.16 is 

used. Figure  4.163, Figure  4.164, Figure  4.165, and Figure  4.166 plot the 

contours of the conservation variables 1 2, , , tu u eρ ρ ρ ρ , respectively. Figure 

 4.167 shows the Mach number contours, while Figure  4.168 and Figure  4.169 

plot 1s  and 2s  contours, respectively. 

 

Again the FDV/MFDV formulation succeeded in handling the 

completely subsonic flow with relatively low Mach number. The solution is 

symmetric over the circular arc. Figure  4.165 is of special importance because 

it indicates that the solution is symmetric about the bump. This solution 

matches the results obtained in  [57] very well. 

 

Figure  4.163   Steady state ρ  contours, subsonic circular arc 

Figure  4.164   Steady state 1uρ  contours, subsonic circular arc 
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Figure  4.165   Steady state 2uρ  contours, subsonic circular arc 

Figure  4.166   Steady state teρ  contours, subsonic circular arc 

Figure  4.167   Steady state Mach No. contours, subsonic circular arc 

Figure  4.168   Steady state 1s  contours, subsonic circular arc 
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Figure  4.169   Steady state 2s  contours, subsonic circular arc 

4.5 Conclusions and Future Research 

The aim of the thesis as stated in section  1.5 was to develop a time-

accurate flow solver for Euler equations. The flowfield dependent variation 

method (FDV) has been investigated to verify the claim that this method is 

capable of operating on all flow regimes. A modification of the theory has been 

developed and published in  [56] during this research. Another paper has been 

submitted and accepted for publication in  [60] that verifies the ability of the 

MFDV method to handle supersonic internal flow problems. 

 

As a result of the theoretical analysis, a FDV-FEM compressible Euler 

flow solver has been developed. The characteristics of this solver have been 

stated in  1.5 and they have been carefully met in this research. Each 

characteristic will be discussed now to prove that it has been implemented. 

 

 The solver is able to operate on virtually all flow regimes, starting from 

subsonic, transonic, and to the completely supersonic flow. No special 

treatment is required to handle any case. The same algorithm and 

computer program have been used in all the results in sections  4.3 and 

 4.4 for supersonic and subsonic/transonic flows, respectively. 

 The time accuracy of the developed solver has been proved in section 

 4.2, where the analytical solution of the shock tube problem has been 

obtained with remarkable accuracy. 
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 As has been discussed in each of the proposed test cases in sections  4.2, 

 4.3, and  4.4, various boundary conditions that could simulate many 

problems have been included in the developed algorithm. 

 Another benefit from the finite element implementation is the ability of 

the solver to handle unstructured grids and this has been demonstrated 

by freely discretizing all the domains in the proposed test cases without 

restrictions and without the need to allocate large transformation 

matrices. 

 As demonstrated from the problems in sections  4.2,  4.3, and  4.4, when 

discontinuities and/or shockwaves are generated the proposed 

combination of FDV/MFDV algorithm with discontinuity capturing 

operator could resemble a solution that is free from the Gibbs type 

errors. 

 The developed computer program has been written in FORTRAN 90 

format. This program uses the preconditioned GMRES iterative solver 

discussed in  Appendix B . 

 Each computational step in the computer program has been carefully 

programmed and no external and/or built in functions have been used in 

the program code. 

 

As final conclusion, the FDV/MFDV formulations appear to be 

promising for simulating all flow regimes. The finite element discretization 

gave the method more physical meaning and more power in discretizing any 

problem. Most of the encountered discontinuities such as shock waves have 

been simulated with outstanding ability to be captured with at maximum two 

elements. It is suggested for any future work that would be carried by any other 

interested researcher to look at the following points: 

 

 The extension of this work to include the boundary conditions that is 

required for external flow problems. 
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 The computer program can be enhanced by supporting parallel 

computing algorithms. 

 The sparse matrix GMRES solver can be replaced with combination of 

the GMRES iterative algorithm with element by element or edge by 

edge technique. 

 The extension of this work for Navier-Stokes is a logical step because of 

the proved robustness of the FDV/MFDV formulations. 
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Appendix A   

Jacobian Matrices  

 

A.1 Convection Jacobian ia  

The convection flux vector is given in 2-D space in terms of the 

primitive variables by: 

 

 

1 2
2

1 1 1 2 1
2

2 2 1 2 2

1 1 2 2

i

i i
i

i i

i t i t t

u u u
u u P u P u u
u u P u u u P
u e Pu u e Pu u e Pu

ρ ρ ρ
ρ δ ρ ρ
ρ δ ρ ρ
ρ ρ ρ

⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥+ +⎪ ⎪ ⎢ ⎥= =⎨ ⎬ ⎢ ⎥+ +⎪ ⎪ ⎢ ⎥⎪ ⎪+ + +⎩ ⎭ ⎣ ⎦

F  (A.1) 

 

In order to calculate the convection Jacobian for quasi-linear Euler 

equations, the convection flux vector should be written in terms of the 

conservation variables. Rewriting in terms of the conservation variable we get: 

 

 

( ) ( )

2 3
2

2 32

1 1
2

2 3 3

1 1

2 4 3 4

1 1

i

U U
U UU P

U U

U U U P
U U

U U P U U P
U U

⎡ ⎤
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥

= ⎢ ⎥+⎢ ⎥
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥
⎣ ⎦

F  (A.2) 

where; 

 ( ) ( )2 2
2 3

4
1

1 -
2

U U
P U

U
γ

⎛ ⎞+
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (A.3) 

The convection Jacobian is defined by: 

 i
i

∂
=
∂
Fa
U

 (A.4) 
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It is apparent from the definition that this Jacobian is a third order 

tensor. In 2-D space, this tensor will have the dimensions of [ ]2,4,4 . A 

MATLAB script that have been used to drive this Jacobian in 2-D space is 

presented in  A.1.1, followed with the outputs written in both of the 

conservation (subsection  A.1.2) and primitive (subsection  A.1.3) variables 

form. These results have been double checked with  [1],  [3], and  [34] to assure 

their correctness. 

A.1.1 Derivation by MATLAB 
 

clear all 

syms U1 U2 U3 U4 real 

 

syms U1X1 U1X2 real 

syms U2X1 U2X2 real 

syms U3X1 U3X2 real 

syms U4X1 U4X2 real 

syms gam R real 

 

U = [U1, U2, U3, U4]; 

DU = [U1X1, U1X2; 

  U2X1, U2X2; 

  U3X1, U3X2; 

  U4X1, U4X2]; 

 

P = (gam-1)*(U4-(U2^2+U3^2)/(2*U1)); 

F2d = [U2         , U3      ; 

  U2^2 /U1+P      , U2*U3/U1; 

  U2*U3/U1        , U3^2 /U1+P; 

  U2*U4/U1+P*U2/U1, U3*U4/U1+P*U3/U1]; 

 

for n = 1:4, 

  for m = 1:4, 

    for i = 1:2, 

       

      a2d(n,m,i) = simplify(diff(F2d(n,i), U(m))); 

       

       

    end 

  end 

end 

echo on 

 

pretty(expand(a2d(:,:,1))) 

pretty(expand(a2d(:,:,2))) 
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echo off 
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A.1.2 Conservation Variables Form 

 

 

( ) ( ) ( )

( )

1 32
21

1 1

1 2 3 3 2
2

1 1 1

1 1 2 3 2
41 42 2

1 1

0 1 0 0

3 1 1

0
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UUa
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U U U U
U U U
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γ γ

⎡ ⎤
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a  (A.5) 
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A.1.3  Primitive Variables Form 

 

 
( ) ( ) ( )

( )

1
21 1 2

1
1 2 2 1
1 1
41 42 1 2 1
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0
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a u u
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A.2 Entropy Variables' Jacobians 

 

In order to obtain the entropy variables Jacobian C , the conservation 

variables should be written in terms of the entropy variables. The relation 

between the two variables' sets is given by: 
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4

4

1
2
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where; 
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⎣ ⎦

V  (A.10) 

 ( )
( )

( ) ( )
( )

1
1

0

4

1
exp

1
s s

e
V

γ

γγ
ρ

γ

⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎛ ⎞ ⎛ ⎞−−⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟ −− ⎝ ⎠⎝ ⎠

 (A.11) 

 
( )2 2

2 3
1

42
V V

s V
V

γ
+

= − +  (A.12) 

Such that; V  is the entropy variables vector. The entropy variables 

Jacobian is defined by: 

 ∂
=
∂
UC
V

 (A.13) 

and the inverse Jacobian definition is defined by: 

 1− ∂
=
∂
VC
U

 (A.14) 

It is apparent from the definitions that these two Jacobians are second 

order tensors. In 2-D space, the entropy variables Jacobian C  and its inverse 
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1−C  will have the size of [ ]4,4 . The MATLAB script used in the derivation of 

these Jacobians is presented in  A.2.1, followed with the outputs written in the 

entropy variables form in  A.2.2. These results have been double checked with 

 [1],  [3], and  [34]. 

A.2.1 Derivation by MATLAB 
 

clear all 

syms U1 U2 U3 U4 V1 V2 V3 V4 so real 

 

syms gam R muu k real 

 

U = [U1, U2, U3, U5]; 

V = [V1, V2, V3, V5]; 

 

s = gam-V1+(V2^2+V3^2)/(2*V5); 

rhoe = ((gam-1)/(-V5)^gam)^(1/(gam-1))*exp((-s+so)/(gam-1)); 

UinV2d = rhoe*[-V5; 

    V2; 

    V3; 

    1-(V2^2+V3^2)/(2*V5)]; 

 

for n = 1:4, 

    for m = 1:4, 

        C2d(n,m) = simplify(diff(UinV2d(n), V(m))); 

    end 

end 

 

C2dInv = simplify(C2d^-1); 

 

C2dSimple = simplify(C2d/rhoe*(gam-1)*V5); 

C2dInvSimple = simplify(C2dInv*rhoe*-V5); 

 

echo on 

 

pretty(expand(C2dSimple)) 

pretty(expand(C2dInvSimple)) 

 

echo off 
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A.2.2 Entropy Variables Form 

 

1γ γ= −  
2 2

22 3
1 2 1 3 1 1

4

, 1, 2
2

V Vk k k k k k
V

γ γ+
= = − = − +  

2 2
1 4 2 2 4 3 1 2 3, ,c V V c V V d V Vγ γ= − = − = −  

1 2 4 2 3 4,e V V e V V= =  

 

 

( )2
4 1 2 4 1

1 1 2 2

4 2 3 2

3

1

.

V e e V k
c d V ke

V c V k
symm k

ρ
γ

⎡ ⎤− −
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

C  (A.15) 

 

 

( )2
1 1 2 1 3 1 4

2
1 2 4 1 1

2
4 3 4 2

2
4

1
1

.

k k V k V k V
V V d e

eV V V e
symm V

γ

ρ
−

⎡ ⎤+ +
⎢ ⎥− −− ⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

C  (A.16) 
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Appendix B   

Preconditioned Sparse Matrix GMRES Solver 

 

In most, if not all, FEMs a global system contribution matrix results 

from the assembly of the element equations in the form: 

 , ,1 ,1n n n n=A X F  (B.1) 

Where; A is the global contribution matrix of size [ ],n n , F  is the right hand 

side vector [ ],1n , X  is the unknowns vector [ ],1n , n  is the order of the 

system. 

 

To get the finite element solution this system has to be solved after 

enforcing the boundary conditions. Exact solvers, like Gauss elimination, are 

considered to be a good choice for small finite element applications. But, for 

actual finite element applications, where the size of the system becomes very 

large, an iteration-based matrix solver is due. 

 

The matrix storage should also be reduced, because many of the matrix 

entries are essentially zeros. These zeros come from the naturally unconnected 

nodes. The sparse matrix storage is considered to be a good solution. Many 

other storage formats exists like Element By Element (EBE) storage and edge 

by edge. But these methods have been developed mainly to help in parallel 

computing strategies. Because parallel computing facilities are not an option, 

only the sparse matrix format is considered. 

 

For large time steps and/or badly meshed domains (with very large and 

very small elements), the global contribution matrix becomes ill-conditioned. 

Such systems can slow the convergence of any iterative solver. It can even 

cause failure of convergence in some cases. Many preconditioning techniques 

have been developed to improve the convergence of these systems by using a 

certain transformation. This transformation clusters the matrix bandwidth, and 
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hence accelerates the convergence. The reader is referred to  [61]- [66] for 

further readings on this subject. 

 

One of the most successful iterative solvers is the Generalized Minimal 

RESidual (GMRES). This solver has the ability to work on unsymmertic 

matrices with superior performance compared to other conventional solvers. In 

this appendix the pseudo code of the GMRES solver is introduced. Also the 

implemented preconditioning techniques are introduced. The sparse matrix 

format is left as a programming option. 

B.1 GMRES Algorithm 

From  [64] the GMRES algorithm can be summarized as follows: 

 Choose initial value for ( )0X β and compute: 

 
( ) ( )

( ) ( ) ( )

0 0

1 0 0

E F A X

E E E

α α αβ β

α α α

= −

=
 

 Loop for a selected integer r  (Krylov space dimension), and compute: 

 

i ( ) ( )

( ) i ( ) ( )

i ( ) i ( ) ( ) ( )

( ) i ( )

( ) i ( ) ( )1

   1,2,......,

   1,2,......,

,

,

1,

1,

i i

i i

i i j

i

ii

for i r

E A E

for j i

H j i E E

E E H j i E
end j

H i i E

E E H i i
end i

α βαβ

α α

α α β

α

α α
+

=

=

=

=

= −

+ =

= +

 

 Using Krylov space: 

 , , , ,n n n r n r r r=A B B H  (B.2) 

Where; 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2
1 1 1

1 2
2 2 2

1 2

.

.
. . . .

.

r

r

r
n n n

E E E

E E E

E E E

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B  (B.3) 

 Get y ξ  that minimizes η , such that: 

 ( )( ) ( )0 0min minF A X z E A B yα αβ β β α αβ βξ ξη = − + = −  (B.4) 

 Substituting from Krylov space definition: 

 ( )0min E B H yα αβ βξ ξη = −  

 ( ) ( ) ( ) ( ) { }10 0 0 1,0,0,...,0E E E E Bαα α α αβ
Τ= =∵  

where; 

 ( ){ }0 ,0,0,...,0e Eβ α

Τ

=  

 ( )0E B eα αβ β∴ =  

 Substituting: 

 ( )min B e H yαβ β βξ ξη = −  

So to have a minimum the following relation should hold: 

 0e H yβ βξ ξ− ≅  

 1y H eξ βξ β
−=  

 ( ) ( )1 0X X B yα α αβ β= +  

 Restart: 

 ( ) ( )1 1E F A Xα α αβ β= −  

 
( ) ( ) ( )1 1 1E E Eα α α=  

 Loop until convergence. 
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B.2 Q-R Modification 

Using the same steps illustrated before except for the inversion of the 

Hessenberg. This modification mainly aims at avoiding the inversion of the 

Hessenberg matrix by using a system of successive rotations in the Krylov 

space. This transforms the Hessenberg matrix into an upper triangular matrix of 

the form: 

 

1,1 1,2 1, 1 1,

2,2 2,

1, 1

,

.

0 . .
0 0 . . .

. . 0 .

0 0 0 0

r r

r

r r

r r

H H H H

H H
H R H

H

H

βξ βγ γξ

−

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (B.5) 

 1 2 . re R e e e eβ βγ γ

Τ
⎡ ⎤= = ⎣ ⎦  (B.6) 

 

where; R βγ  is the rotation matrix given by: 

 1 1..r rR βγ
−= R R R  (B.7) 

Such that: 

 

1
.

1

1
.

1

k kk

k k

c s
s c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R  (B.8) 

 

 ( )
( )( ) ( )( )2 2

,

, 1,
k

H k k
c

H k k H k k
=

+ +
 (B.9) 

 ( )
( )( ) ( )( )2 2

1,

, 1,
k

H k k
s

H k k H k k

+
=

+ +
 (B.10) 
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For more details the reader is referred to  [64]- [65]. Then the system will be: 

 0e H yβξβ ξ− =  (B.11) 

and this system can be solved using backward substitution. 

B.3 Preconditioning 

In order to improve the convergence of the GMRES solver, a 

preconditioning technique may be used. This technique aims mainly to 

decrease the matrix bandwidth (the ratio between the maximum and minimum 

Eigen values) which leads to rapid convergence of the iterative solver. Y. Saad 

proposed a flexible inner-outer preconditioned GMRES algorithm in [65] 

(FGMRES). This algorithm has been adapted here for the use with sparse 

matrices. In what follows, ,n nM  represents the preconditioning matrix. As 

close as ,n nM  to ,n nA , the preconditioning technique will be efficient. Many 

approximations for the preconditioning matrix have been introduced in 

literature. All these matrices share the property of easily calculated inverse. The 

most famous preconditioning matrices are: 

 

 The diagonal-preconditioning matrix. Where only the diagonal of the 

original matrix is kept. 

 The tri-diagonal matrix. Where only the diagonal element, the first left 

element, and the first right element are kept. 

 The Incomplete LU decomposition of zero order (ILU0). 

 The Incomplete LU decomposition of first order (ILU1). 

From [65] the FGMRES algorithm can be summarized in the following 

steps: 

 Choose initial value for ( )0X β and compute: 

 
( ) ( )

( ) ( ) ( )

0 0

1 0 0

E F A X

E E E

α α αβ β

α α α

= −

=
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 Loop for a selected integer r : 

 

i ( ) ( )

i ( ) i ( )

( ) i ( ) ( )

i ( ) i ( ) ( ) ( )

( ) i ( )

( ) i ( ) ( )

1

1

   1,2,......,

   1,2,......,

,

,

1,

1,

i i

i i

i i

i i j

i

ii

for i r

Z M E

E A Z

for j i

H j i E E

E E H j i E
end j

H i i E

E E H i i
end i

α βαβ

α ααβ

α α

α α β

α

α α

−

+

=

=

=

=

=

= −

+ =

= +

 

 Using Krylov space: 

 i i1
, ,, , ,n r n rn n n n r r

− =A M Z Z H  (B.12) 

where; 

 i

i ( ) i ( ) i ( )

i ( ) i ( ) i ( )

i ( ) i ( ) i ( )

1 2
1 1 1

1 2
2 2 2

,

1 2

.

.
. . . .

.

r

r

n r

r
n n n

Z Z Z

Z Z Z

Z Z Z

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Z  (B.13) 

 Get y ξ  that minimizes η , such that: 

 

( )( )
( )( )

i ( ) i ( )

0

01
, ,

0 1
,

min

min

min
i

F A X z

F A M M X z

Z A M Z y

α αβ β β

α αβ β γ γ ξ ξ ξ

α γαβ β γ ξ

η

−

−

= − +

= − +

= −

 

  (B.14) 

 Substituting from Krylov space definition: 

 i ( ) i0
, ,min r rZ Z H yα α ξ ξη = −  (B.15) 

 Complete as regular GMRES. 
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Appendix C   

Error Indicators  

 

Error estimators for finite element methods have been well developed 

since the early 1970s. There are two different finite element computational 

errors norm forms. These forms are: 

 

 Pointwise error norms. 

 Spacewise error norms. 

 

The type of norms are many and range in the complexity and the 

mathematical base for which a certain norm has been designed. From these 

norms we report the following: 

 

 Sobolev-Space norm error. 

 Hilbert-Space norm error. 

 Energy norm error. 

 p  norm error. 

 2L  norm error. 

 L∞  norm error. 

 

The most used norm error in practice is the 2L  norm. It can be casted in 

both the pointwise and spacewise forms. To define this error norm we need to 

define the global node error αε  as: 

 ˆα α αε ψ ψ= −  (C.1) 

where; ˆ,α αψ ψ  are the numerical and exact solutions, respectively. The 

spacewise 2L  norm error will take the form: 

 ( )
2

1
2 2

Space L
dxε ε= ∫  (C.2) 

while the pointwise counterpart will be: 
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 ( )
2

1
2

Point L α αε ε ε=  (C.3) 

and the percent may be computed by: 

 
( )

2

2

Point
1Point %
2

L
L

β β

ε
ε

ψ ψ
=  (C.4) 

Both relations given in (C.2) and (C.3) can be used to calculate the pointwise 

and spacewise 2L  norm error, respectively, whenever an analytical solution is 

known for a certain problem. 
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