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ABSTRACT

In the present work the flowfield dependent variation
method (FDV), originally developed by T. J. Chung and his co-
workers, has been modified to improve the physical meaning of
the used variation (implicitness) parameters. The modified
method (MFDV) has been applied to the compressible Euler
flow equations. While finite difference techniques are
applicable for solving the resulting system of equations, finite
element discratization has been used via standard Galerkin
method. This choice has been made for two reasons, to take the
well-known advantages of the finite element techniques, and to
maximize the benefits from the gained physical meaning by the
MFDV method. A number of famous test cases have been
solved to prove the applicability of the proposed modification
and a good agreement with the published literature has been
obtained.
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NOMENCLATURE

a, =0F, / OU convection Jacobian tensor

¢, ,R specific heat at constant volume and gas constant
e,e, static and total internal energy
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F convection flux

i,] co-ordinate dimension counters = 1,2

L element characteristic length

M Mach No.

n boundary normal vector

P.T pressure and temperature

S158, 1** and 2™ order convection FDV implicitness parameters
t,At time and time step

u velocity components in 2-D space

U conservation variables vector

X, space co-ordinates

a, ,3 nodal element counters = 1,2,3.4 for quadrilateral elements
D, q*) domain and boundary shape functions

Y specific heat ratio

P density

Qr domain and contour boundaries

Y( ) gradient of a scalar function

INTRODUCTION

Many practical CFD problems in industry and research
attain crucial flow situations. To accurately predict flow
properties, the solution technique should be able to handle the
strong interactions between high and low speeds, subsonic-
transonic-supersonic, viscous and inviscid flows for both
compressible and incompressible cases. In the recent decades,
all the CFD research efforts ([2]-[8]) were directed towards the
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development of numerical techniques that are able to operate on
different flow regimes seamlessly. FDV method has been
devised as a response to this demand ([3] and [9]).

EULER EQUATIONS IN 2-D SPACE

The system of compressible Euler flow equations can be
written in the conservation form as follows:

F

a_U + a_’ =0 (1)

ot O,
Where; in 2-D space the conservation variables vector is given
by:

T
U=[p pu, pu, pe,] 2

Also the convection flux is given by:

P, pu,
Ry i
F — pul pZ:Z 1 (3)
puU, puy +P
pue, +Pu,  pu,e +Pu,
P =pRT (@)
e=cT %)

Eqn. (1) with the ideal gas equation of state, Eqn. (4), and
the thermally perfect gas assumption, Eqn. (5), completes the
system of Euler's flow equations.

Rewriting Eqn. (1) in a quasi-linear form as follows:
ou ou
ot Ox

1

=0 (6)

Where; a,
considered to be time-step dependent.

is the convection Jacobian tensor' which is

FDV METHOD FORMULATION
For a detailed step by step derivation of the FDV method,
the reader is referred to [1], [2], and [9]. The FDV method can

be summarized in the following steps:

a) Expanding U”*' around U” in a special form of Taylor

expansion.
n+sy At 2 0 n+sy
U"“:U"+Ata[j3 +( 2) agz +O((At)3)
t t
Where;
6U" +81 6U" GAU" +1
3 = 5 +5, Py 0<s, =<1
62Un+s2 aZUn 62AUn+1
ar o a 0<s, <l

AUn+1 — Un+1 _ Un

" See the appendix.

The implicitness parameters, s, and s,, are flowfield

dependent. They may gain their physical meaning by being
calculated from the flow variables' fluctuations. The proposed
formula by T. J. Chung in [9] for calculating s,,s, from the

current flowfield is given by:

min (r,1) r>¢g
s, =40 r<eM_. =0 @)
1 M, =0
1 .
s, =5(1+sl ). 0.05<7<0.2 ®)
Where;

r=yM2 -M2 /Mmin , & is a small number, and

M ..M .. are the minimum and maximum values of the Mach
No. in the neighboring nodes (i.e. between the element nodes).

b) Substituting from Eqn. (6) into the Taylor expansion by
interchanging the time derivatives with the spatial
derivatives we get:

n n+l
AU = At ok —slaAF’ +
Ox, Ox,
Aty OF”
(A), o (],
2 ox, | Ox,

(ary o £6AFJ"“J+

+

€))

+-—s,a, —
2 ox ox ;

+0 (ar)')

¢) Rewriting Eqn. (9) in the residual form and substituting all
the A terms with their Jacobian equivalents we get:

AU™ +Arsa, %(AU"“%

(ar) &

s,a,a,
2 " Ox,0x

n(Ar) OF”
+Atai—( ') a 0 ( ”J+

(AUn+l)+
(10)

ox, 2 ox, |ox,

10 ((ae)')=0

Rearranging Eqn. (10):
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AU"' 4+ D! i(AU"“)Jr
ox

i
2

+E

;;ijaxj (AU")+Q" + (11)

+0((ar)')=0

Where;
; . _ ()
D! =Assa,, E} :—Tsza,aj,and
G (A &
n :A Fi’l _ Fi’l
Q t@x,( ') ) m 8x,6x>/( ”)

Eqn. (11) can be solved either by finite difference methods
or finite element methods. The latter has been chosen for two
reasons: to take the well-known advantages of the finite element
techniques, and to maximize the benefits from the gained
physical meaning by the MFDV method.

FINITE ELEMENT DISCRATIZATION: STANDARD
GALERKIN METHOD

From the standard Galerkin method we have:
[®, R(U,F)dQ=0 (12)
Q

Where; R(U,F) is the residual of Eqn. (11)

In what follows the order of the solution error O ((At )3)

will be omitted for convenience.

Expressing the conservation variables vector as a linear
combination of the trial functions @_ we have:

U(xt)=a,(x)U,(t) (13)

Performing integration by parts:

[@,®,AU;"dQ+
Q
+ [y D Dy AU 1, dT +

r
-[p) ®, @, AU} dQ+

Q
+[E] Do Dy AU, dT+

r
n n+l
-[Ej@,, @, AU, dQ+
Q

+AL jq*x, F, ndT - [@,, F'dQ +
T Q

ArY . n
_( ;) _‘-a, Do 86 (F,Jn, dI' +
H X

J

2
+(At) [a®,, i(Fj")cm =0
Q

2 e
Rearranging these terms:
(AL, +Bl,)AU," =H, +N., (14)
Where;
Al = j(cpacpﬂ -D/®,, 0, -E|D, D, )dQ
Q

B, = J(Dj’ Oy Pp+E) o Dy jﬂ, dl’
I

2
H! = J(AICDW F —ﬂa,op i(F" )JdQ
Q | 2

a,i J
ij

" * PR (Al)z * a PR
Na = _Al q)a Fi +—ai q)a Fj }’ll- dr
: 2 Ox

J

Eqn (14) is referred to as the element equations.

It is important to remember that by setting s, =0 and
s, =1, the so called Taylor-Galerkin method is obtained.
Actually, any known numerical scheme in either finite element
or finite difference may rise as a special case of the FDV
method with s, and s, fixed to certain values. For a
comprehensive comparison between FDV and other methods
the reader is referred to [6]. Allowing the implicitness
parameters (s,s,) to vary from element to element gives the
FDV method the ability to provide a unique and distinctive

numerical scheme for each element according to its current
flowfield values.

MODIFIED THEORY: THE MFDV METHOD

In the proposed method (MFDV), the relation used to
recover the first order implicitness parameter (Eqn. (7)) from
the current flowfield data is modified to give this parameter a
deeper physical meaning. This can be accomplished by setting
s to be proportional to the first order derivative of the Mach
No. This is quite equivalent to the definition of s given in [2]-

[4], [6]. Also to retain the dimensional similarity the result is
multiplied by the elemental characteristic length and scaled by
the minimal Mach No. between the element nodes. The
proposed modification is given by:

s, =min(r,l) (15)
Where;
r=L"|VM|/M,
And the other implicitness parameter (s,) is calculated as
in Eqn. (8).
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The authors would like to admit the applicability and
effectiveness of the original formula proposed by T. J. Chung
and his co-workers. The current work is a step towards deeper
understanding of the role of the implicitness parameters.

BOUNDARY CONDITIONS

It is well known that an efficient and robust boundary
conditions implementation technique is a crucial issue for all
CFD problems. In this section the most important boundary
conditions are discussed. These boundary conditions are used to
simulate many practical flow situations encountered in real flow
problems.

a) Inviscid Wall Boundary Condition (No Penetration)

There is many ways to implement the wall boundary
conditions inside the Euler solver. One of the most successful
methods is the method of co-ordinates rotation given in Reddy
[10] and implemented successfully by many others including F.
Moussaoui [7], T. E. Tezduyar et al. [8]. In this method the
velocity components at the solid wall are transformed to the
normal and tangential components, as shown in Figure 1.

These axes are used to introduce the zero normal velocity
(u, =0.0) via equating the normal component to zero. The

coordinate transformation matrix will take the form:

u, cosd —sinf\(u,
u, sind cos@ )\u,
For the nodes on the solid boundary a new vector of
unknowns is to be introduced via the following rotation matrix:

Figure 1 Co-ordinates rotation at a solid wall

Yol 1 0 0 0) p
pu, | |0 cos@ sind 0| pu,
ou, 0 —sind cosé 0| pu,
pe, 0 0 0 1)\ pe,

b) Supersonic Inlet Boundary Condition
For all the nodes on the supersonic inlet boundary, the four
flow properties ( p, pu,, pu,, pe, ) should be specified exactly.

¢) Supersonic Exit Boundary Condition
Left free

NUMERICAL RESULTS

Many problems have been solved to validate the
applicability and effectiveness of the MFDV method. All the
test cases have been solved using Fortran 90 code and a
preconditioned GMRES sparse matrix solver (see [11] and
[12]). In this section we present only two test cases.

Shock Reflection Problem
The solution domain of shock reflection from inviscid wall,

as shown in Figure 2, is discretized uniformly with 60x20
bilinear rectangular elements.

Figure 2 Shock reflection

At both inlet and upper boundaries, the supersonic inlet
boundary condition is used with the following values:

Inlet:

p=1.0, pu, =29,
pu, =0.0, pe, =5.99075
Upper:

p=1.17, pu, =4.453,
pu, =-0.86, pe, =9.87

On lower boundary, the inviscid wall (no-penetration)
boundary condition is used and the exit boundary is left free
being supersonic exit.

Figure 4 shows the Mach No. contours. Our results matches
very well the results obtained in [13]. Figure 5 shows the
contours of s, while Figure 6 shows the contours of s,. It is

clear that s parameter resolves the solution itself and this
interesting property for s may be utilized if an adaptation
technique is to be used.
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Figure 7 shows a comparison between the Mach No. aty =
0.5 from this test case and a more refined grid (120x60) with
the exact analytical solution. It is clear that as the grid gets finer
the exact solution is approached. Also a higher over/under-shots
can be observed for finer grids. This is due to the lost solution
modes resulting from the grid selectivity.

Compression Corner Problem

The compression corner problem is shown in Figure 3. The
solution domain is discretized using 60x40 bilinear
quadrilateral elements with expansion ratio of 1.02 in the lateral
direction.

M= 1.84
1.0 i

Figure 3 Compression corner

The inlet boundary is supersonic and the following values
have been used:
p=1.0,

pu, =0.0,

pu, =1.84,
pe, =3.47855

The no-penetration boundary condition is applied on both
the upper and lower boundaries and the exit boundary is left
free being supersonic.

Figure 9 shows the Mach No. contours. The shown results
matches very well the results of the analytical solution given
from the oblique shock wave theory. Figure 10 shows the
contours of s and Figure 11 shows the contours of s, .

Figure 8 is a comparison between the Mach No. at y = 0.5
from this test case and a relatively fine grid (120x80) with the
exact analytical solution. The same trend that was observed at
the first test case has, also, attained in this test case.

CONCLUSIONS

MFDV method is capable of recovering the implicitness
parameters and it gave a satisfactory performance in the tested
problems. This work is considered to be an attempt towards

deeper understand of the implicitness parameters and more
accurate calculations of s and s,. The authors expect to

publish an extension of this work to the solution of the Navier-
Stokes equations very soon. Also they expect to publish more
results to demonstrate the capabilities of both FDV and MFDV.
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APPENDIX

The 2-D convection Jacobian, a, , is given by:

al
0 1 0 0
ay, (3_7)7"1 (1_7)742 (7_1)
—U U, u, u, 0
azlu a:z (1 7)“1”2 yu,
ay, ——((7/—3)u12 +(;/ l)uzz)
a, =-u, ((1—7)(1412 +u, )+)/e[)
1-y
a,, = ye, +( 2 )(3u12 +u22)
aZ
0 0 1 0
—Uu, u, u, 0
a, | (1=p)u, |(3=7)u, | (»-1)
a:l (1_7)7"1”2 a:3 Vi,
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Figure 4 Mach No. contours for shock-reflection test case, 60x20
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Figure 5 The first order implicitness parameter S, contours for shock-reflection test case, 60x20
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Figure 6 The second order implicitness parameter s, contours for shock-reflection test case, 60x20
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Figure 7 Comparison between different grids and the analytical solution for shock-reflection test case at y = 0.5
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Figure 8 Comparison between different grids and the analytical solution for compression-corner test case aty = 0.5
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Figure 9 Mach No. contours for compression-corner test case, 60x40
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Figure 10 The first order implicitness parameter S contours for compression-corner test case, 60x40
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Figure 11 The second order implicitness parameter 5, contours for compression-corner test case, 60x40
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