
 
 

 

  
Abstract— The FDV method was originally developed by T.J. 

Chung   [3]- [6]. The authors developed and presented a 
modification to this method named MFDV method in   [2]. The aim 
of this modification was to give the implicitness parameters a 
deeper physical meaning while maintaining the solution stability 
and robustness. In the present work the modified flowfield 
dependent variation method (MFDV) has been tested and verified 
for the solution of supersonic internal flow problems. Starting 
from compressible Euler flow equations and applying the MFDV 
method with finite element discretization, many successful 
supersonic internal flow problems have been reported. Special 
attention has been given to complex shockwave patterns. Finite 
element implementation has been carried out via standard 
Galerkin method. Good agreement has been obtained in all cases 
with available analytical solutions, if any, and published 
literatures. 
 

Index Terms— Computational Fluid Dynamics (CFD), 
Flowfield Dependent Variation (FDV) method, Euler equations, 
Finite Element (FE), Galerkin method, Modified Flowfield 
Dependent Variation (MFDV) method.  
 

I. NOMENCLATURE 

ia  i= ∂ ∂F U convection Jacobian tensor 

vc  specific heat at constant volume 

e  static internal energy 

te  total internal energy 

F  convection flux 

,i j  co-ordinate dimension counters = 1,2 

*L  element characteristic length 

M  Mach No. 

in  boundary normal vector 

P  pressure 
R  gas constant 

1s  1st order convection FDV implicitness parameter 

2s  2nd order convection FDV implicitness parameter 

T  temperature 
t  time 
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tΔ  time step 

iu  velocity components in 2-D space 

U  conservation variables vector  

ix  space co-ordinates 

,α β  nodal element counters 
 = 1,2,3,4 for quadrilateral elements 

Φ  domain shape functions 
∗

Φ  
boundary shape functions 

γ  specific heat ratio 

( )∇
 

gradient of a scalar function 

ρ  density 

Ω  domain boundary 
Γ  contour boundary 

II. INTRODUCTION 
The problem of internal supersonic flow has the potential of 

being investigated endlessly. To accurately calculate the flow 
properties in such flows, the solution technique should be able 
to handle the strong interactions resulting from any 
compressible flow phenomena like shockwave/expansion fan 
patterns in the solution domain, so in the recent decades many 
CFD research efforts ( [2]- [10]) were directed towards the 
development of such numerical techniques. These techniques 
should be able to operate on flow domains with shockwaves 
without altering the solution accuracy. The authors presented 
the MFDV method for the first time in  [2] and claimed that 
MFDV method is able to operate on different flow situations 
without losing its robustness or accuracy. So they want to 
demonstrate some of the MFDV capabilities in this paper via its 
ability to handle supersonic internal flow problems. 

A shortened formulation of the Euler equations with the 
MFDV method will be presented followed with the finite 
element discretization for the resulting equations. After that, a 
quick review for the supersonic flow boundary conditions is 
presented. The final section contains the numerical results for 
three supersonic internal flow problems. 

III. EULER EQUATIONS IN 2-D SPACE 
The system of compressible Euler flow equations can be 

written in the conservation form as follows: 
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Where; in 2-D space the conservation variables vector is 
given by: 
 [ ]1 2 tu u eρ ρ ρ ρ Τ=U  (2) 
Also the convection flux is given by: 
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Eqn. (1) with the ideal gas equation of state Eqn. (4), and the 
thermally perfect gas assumption, Eqn. (5), completes the 
system of Euler's flow equations. 
 
Rewriting Eqn. (1) in a quasi-linear form as follows: 
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Where; ia  is the convection Jacobian tensor1 which is 
considered to be time-step dependent. 

IV. MFDV METHOD FORMULATION 
For a detailed step by step derivation of the MFDV method, 

the reader is referred to  [1]. The MFDV method can be 
summarized in the following three steps: 
 

A. Expanding 1n +U  around nU  in a special form of Taylor 
expansion: 
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The implicitness parameters, 1s  and 2s , are flowfield 
dependent. They may gain their physical meaning by being 
calculated from the flow variables' fluctuations. The proposed 
formula by A. A. Megahed et al  [2] for calculating 1 2,s s  from 
the current flowfield is given by: 
 ( )1 min ,1s r=  (7) 

 ( )2 1
1 1
2

s sη= +  (8) 

 
1 See the appendix for full listing of this Jacobian in 2-D space. 

Where; *
minr L M M= ∇ , 0.05 0.2η< < , and minM  is the 

minimum Mach No. in the neighboring nodes (i.e. between the 
element nodes). 

B. Substituting from Eqn. (6) into the Taylor expansion by 
interchanging the time derivatives with the spatial derivatives 
we get: 
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C. Rewriting Eqn. (9) in the residual form and substituting all 
the Δ  terms with their Jacobian equivalents we get: 
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Rearranging Eqn. (10): 
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Where; 
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Eqn. (11) can be solved either by finite difference methods or 
finite element methods. The latter has been chosen for two 
reasons; to take the well-known advantages of the finite 
element techniques, and to maximize the benefits from the 
gained physical meaning by the MFDV method. 

V. FINITE ELEMENT DISCRETIZATION: STANDARD GALERKIN 
METHOD 

From the standard Galerkin method: 
 ( ), 0dα

Ω

Φ Ω =∫ R U F  (12) 

Where; ( ),R U F  is the residual of Eqn. (11) 
In what follows the order of the solution error will be omitted 

for convenience. Expressing the conservation variables vector 
as a linear combination of the trial functions αΦ  we have: 

 ( ) ( ) ( ),t tα α= ΦU x x U  (13) 
Performing integration by parts: 
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Rearranging these terms: 
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Eqn (14) is referred to as the finite element equations. It is 
important to remember that by setting 1 0s =  and 2 1s = , the so 
called Taylor-Galerkin method is obtained. Actually, any 
known numerical scheme in either finite element or finite 
difference may rise as a special case of the FDV/MFDV 
methods with 1s  and 2s  fixed to certain values. For a 
comprehensive comparison between FDV and other methods 
the reader is referred to  [6]. Allowing the implicitness 
parameters ( 1, 2s s ) to vary from element to element gives the 
FDV/MFDV methods the ability to provide a unique and 
distinctive numerical scheme for each element according to its 
current flowfield properties. 

VI. BOUNDARY CONDITIONS 
It is well known that an efficient and robust boundary 

conditions implementation technique is a crucial issue for all 
CFD problems. In this section the most important boundary 
conditions are discussed. These boundary conditions are used 
to simulate many practical flow situations encountered in real 
supersonic internal flow problems. 

A. Inviscid Wall Boundary Condition (No Penetration) 
There are many ways to implement the wall boundary 

conditions inside the Euler solver. One of the most successful 
methods is the method of co-ordinates rotation given in Reddy 
 [12] and implemented successfully by many others including F. 
Moussaoui  [8], T. E. Tezduyar et al.  [9]. In this method the 
velocity components at the solid wall are transformed to the 
normal and tangential components, as shown in Figure 1. 

These axes are used to introduce the zero normal velocity 
( 0.0nu = ) via equating the normal component to zero. The 
coordinate transformation matrix will take the form: 
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For the nodes on the solid boundary a new vector of 
unknowns is to be introduced via the following rotation matrix: 

 
Figure 1 Co-ordinates rotation at a solid wall 
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B. Supersonic Inlet Boundary Condition 
From the theory of characteristics, all the flow properties 

should be defined in the supersonic inlet boundary condition. 
So, at the nodes on the supersonic inlet boundary the four flow 
properties ( 1 2, , , tu u eρ ρ ρ ρ ) are specified exactly. 

C. Supersonic Exit Boundary Condition 
Again from the theory of characteristics, all the flow 

properties should be extrapolated from the solution domain for 
the supersonic exit boundary condition. So, at the nodes on the 
supersonic inlet boundary the four flow properties 
( 1 2, , , tu u eρ ρ ρ ρ ) are left free. Another benefit from the finite 
element technique is that, no extrapolation technique is needed 
since the shape function assumed across the element will 
provide continuity of the unknowns at the boundary. 

VII. NUMERICAL RESULTS 
Many problems have been solved to validate the 

applicability and effectiveness of the MFDV method in the 
solution of supersonic internal flow problems. In all cases the 
method showed good agreement with analytical solutions, if 
any, and with the published literature. For more results using 
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the MFDV method, the reader is referred to  [1] and  [2]. All the 
test cases have been solved using FORTRAN 90 code and a 
preconditioned GMRES sparse matrix solver. The reader is 
referred to  [13] and  [14] for more details on GMRES. In this 
section we present three test cases. 

A. Half Wedge in a Supersonic Wind Tunnel 
 

Figure 2 Half wedge 
The solution domain of a half wedge, as shown in Figure 2, is 

discretized uniformly with 120x80 bilinear rectangular 
elements. At the inlet boundary, the supersonic inlet boundary 
condition is used with the following values: 
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1.0, 1.40
0.0, 2.76575t
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On lower boundary and upper boundaries, the inviscid wall 
(no-penetration) boundary condition is used and the exit 
boundary is left free being supersonic exit. 

Figure 5 shows the Mach No. contours. Our results match the 
results obtained from the oblique shockwave theory. Figure 6 
shows the contours of 1s  while Figure 7 shows the contours of 

2s . It is clear that 1s  parameter resolves the solution itself and 
this interesting property for 1s  may be utilized if an adaptation 
technique is to be used. 

Figure 14 shows a comparison between the Mach No. at y = 
0.5 from this test case and a relatively coarse grid (60x40). It is 
clear that as the grid gets finer the exact solution is approached. 
Also a higher over/under-shots can be observed for finer grids. 
This is due to the lost solution modes resulting from the grid 
selectivity. 

B. Extended Compression Corner Problem 
 

Figure 3 Extended compression corner 
 

The extended compression corner problem is shown in 
Figure 3. The solution domain is discretized using 120x80 
uniform bilinear quadrilateral elements. The inlet boundary is 
supersonic and the following values have been used: 
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Again the no-penetration boundary condition is applied on 
both the upper and lower boundaries and the exit boundary is 
left free being supersonic. 

Figure 8 shows the Mach No. contours. The shown results 
match very well the results of the analytical solution given from 
the oblique shock wave theory. Figure 9 shows the contours of 

1s  and Figure 10 shows the contours of 2s . Figure 15 is a 
comparison between the Mach No. at y = 0.5 from this test case 
and (60x40). The same trend that was observed at the first test 
case has, also, attained in this test case. 

C. Circular Arc Problem 
 

Figure 4 Circular arc 
The circular arc problem is shown in Figure 4. The circular 

arc maximum height is set to 0.04. The solution domain is 
discretized using 120x80 uniform bilinear quadrilateral 
elements. The inlet boundary is supersonic and the following 
values have been used: 
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The no-penetration boundary condition is applied on both 
the upper and lower boundaries and the exit boundary is left 
free being supersonic. 

Figure 11 shows the Mach No. contours. The shown results 
match very well the results given in  [8] and  [10]. Figure 12 
shows the contours of 1s  and Figure 13 shows the contours of 

2s . Figure 16 is a comparison between the Mach No. at y = 0.5 
from this test case and a coarser grid (60x40). The same trend 
that was observed in the first and second test cases is observed 
in this test case also. 

VIII. CONCLUSION 
MFDV method is capable of recovering the implicitness 

parameters for the supersonic internal flow problems and it 
gave a satisfactory performance in all the tested problems. This 
work is regarded as an extension to the authors work in  [1] and 
 [2] to show the MFDV method ability to handle supersonic 
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internal flows. The authors expect to publish another paper to 
validate the capabilities of MFDV in the solution of the 
subsonic/transonic flow problems very soon. Also they expect 
to publish an extension of the MFDV method to solve the 
Navier-Stokes flow equation in both the compressible and 
incompressible forms. 

APPENDIX 
The 2-D convection Jacobian, ia , is given by: 
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Figure 5 Mach No. contours for half wedge test case, 120x80 

 
Figure 6 1s  contours for half wedge test case, 120x80 

 
Figure 7 2s  contours for half wedge test case, 120x80 

Figure 8 Mach No. contours for extended compression corner 
test case, 120x80 

Figure 9 1s  contours for extended compression corner test 
case, 120x80 

 
Figure 10 2s  contours for extended compression corner test 

case, 120x80 
 

 
Figure 11 Mach No. contours for circular arc test case, 120x80 

 
Figure 12 1s  contours for circular arc test case, 120x80 

 
Figure 13 2s  contours for circular arc test case, 120x80 

  
Figure 14 Grid effect for half 

wedge test case at y = 0.5 

Figure 15 Grid effect for 
extended compression corner 

test case at y = 0.5 

 
Figure 16 Grid effect for circular arc test case at y = 0.5 

 


